Well-posedness and persistence property for a four-component Novikov system with peakon solutions

被引:0
|
作者
Wei Luo
Zhaoyang Yin
机构
[1] Sun Yat-sen University,Department of Mathematics
[2] Macau University of Science and Technology,Faculty of Information Technology
来源
关键词
A four-component Novikov system; Local well-posedness ; Blow-up criteria; Persistence property; Peakon solutions; 35Q53; 35B30; 35B44; 35C07; 35G25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we mainly study the Cauchy problem of a four-component Novikov system. We first show the local well-posedness of the system in Besov spaces Bp,rs+1×Bp,rs+1×Bp,rs×Bp,rs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{s+1}_{p,r}\times B^{s+1}_{p,r}\times B^s_{p,r} \times B^s_{p,r}$$\end{document} with p,r∈[1,∞],s>max{1p,12}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,r\in [1,\infty ],~s>\max \{\frac{1}{p},\frac{1}{2}\}$$\end{document} by using the Littlewood–Paley theory and transport equations theory. Then, by virtue of logarithmic interpolation inequalities and the Osgood lemma, we prove the local well-posedness of the system in the critical Besov space B2,132×B2,132×B2,112×B2,112\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\frac{3}{2}}_{2,1}\times B^{\frac{3}{2}}_{2,1} \times B^{\frac{1}{2}}_{2,1}\times B^{\frac{1}{2}}_{2,1}$$\end{document}. Next, we establish two blow-up criteria for strong solutions to the system by using the structure of the system. Moreover, we investigate the persistence property for strong solutions to the system. Finally, we verify that the system possesses a special class of peakon solutions.
引用
收藏
页码:853 / 891
页数:38
相关论文
共 50 条