Oscillation of fourth-order strongly noncanonical differential equations with delay argument

被引:0
|
作者
B. Baculikova
J. Dzurina
机构
[1] Technical University of Košice,Department of Mathematics, Faculty of Electrical Engineering and Informatics
来源
Advances in Difference Equations | / 2019卷
关键词
Noncanonical operator; Fourth order differential equations; Oscillation; 34K11; 34C10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study oscillatory properties of the fourth-order strongly noncanonical equation of the form (r3(t)(r2(t)(r1(t)y′(t))′)′)′+p(t)y(τ(t))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(r_{3}(t) \bigl(r_{2}(t) \bigl(r_{1}(t)y'(t) \bigr)' \bigr)' \bigr)'+p(t)y \bigl( \tau (t) \bigr)=0, $$\end{document} where ∫∞1ri(s)ds<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int ^{\infty }\frac{1}{r_{i}(s)}\,\mathrm {d}{s}<\infty $\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2,3$\end{document}. Reducing possible classes of the nonoscillatory solutions, new oscillatory criteria are established.
引用
收藏
相关论文
共 50 条
  • [1] Oscillation of fourth-order strongly noncanonical differential equations with delay argument
    Baculikova, B.
    Dzurina, J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [2] On the oscillation of fourth-order delay differential equations
    Grace, Said R.
    Dzurina, Jozef
    Jadlovska, Irena
    Li, Tongxing
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [3] On the oscillation of fourth-order delay differential equations
    Said R. Grace
    Jozef Džurina
    Irena Jadlovská
    Tongxing Li
    Advances in Difference Equations, 2019
  • [4] New oscillation criteria of fourth-order neutral noncanonical differential equations
    Jayalakshmi, Manickam Subbarayan
    Thamilvanan, Sivaraj Kanniyammal
    Iambor, Loredana Florentina
    Bazighifan, Omar
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2025, 37 (03): : 319 - 329
  • [5] Oscillation of nth order strongly noncanonical delay differential equations
    Dzurina, Jozef
    Jadlovska, Irena
    APPLIED MATHEMATICS LETTERS, 2021, 115
  • [6] Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument
    Bazighifan, Omar
    Moaaz, Osama
    El-Nabulsi, Rami Ahmad
    Muhib, Ali
    SYMMETRY-BASEL, 2020, 12 (08):
  • [7] Oscillation of noncanonical fourth-order dynamic equations
    Liu, Qingmin
    Grace, Said R.
    Tunc, Ercan
    Li, Tongxing
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [8] OSCILLATION OF SOLUTIONS TO FOURTH-ORDER TRINOMIAL DELAY DIFFERENTIAL EQUATIONS
    Dzurina, Jozef
    Baculikova, Blanka
    Jadlovska, Irena
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [9] Oscillation theorems for fourth-order delay differential equations with a negative middle term
    Dzurina, Jozef
    Jadlovska, Irena
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7830 - 7842
  • [10] Oscillation of fourth-order delay dynamic equations
    Zhang ChengHui
    Agarwal, Ravi P.
    Bohner, Martin
    Li, TongXing
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 143 - 160