共 50 条
Maximum Series-Parallel Subgraph
被引:0
|作者:
Gruia Călinescu
Cristina G. Fernandes
Hemanshu Kaul
Alexander Zelikovsky
机构:
[1] Illinois Institute of Technology,Department of Computer Science
[2] University of São Paulo,Department of Computer Science
[3] Illinois Institute of Technology,Department of Applied Mathematics
[4] Georgia State University,Department of Computer Science
来源:
关键词:
Series-parallel graph;
Approximation algorithm;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Consider the NP-hard problem of, given a simple graph G, to find a series-parallel subgraph of G with the maximum number of edges. The algorithm that, given a connected graph G, outputs a spanning tree of G, is a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{1}{2}$\end{document}-approximation. Indeed, if n is the number of vertices in G, any spanning tree in G has n−1 edges and any series-parallel graph on n vertices has at most 2n−3 edges. We present a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{7}{12}$\end{document}-approximation for this problem and results showing the limits of our approach.
引用
收藏
页码:137 / 157
页数:20
相关论文