Maximum Series-Parallel Subgraph

被引:0
|
作者
Gruia Călinescu
Cristina G. Fernandes
Hemanshu Kaul
Alexander Zelikovsky
机构
[1] Illinois Institute of Technology,Department of Computer Science
[2] University of São Paulo,Department of Computer Science
[3] Illinois Institute of Technology,Department of Applied Mathematics
[4] Georgia State University,Department of Computer Science
来源
Algorithmica | 2012年 / 63卷
关键词
Series-parallel graph; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the NP-hard problem of, given a simple graph G, to find a series-parallel subgraph of G with the maximum number of edges. The algorithm that, given a connected graph G, outputs a spanning tree of G, is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{2}$\end{document}-approximation. Indeed, if n is the number of vertices in G, any spanning tree in G has n−1 edges and any series-parallel graph on n vertices has at most 2n−3 edges. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{7}{12}$\end{document}-approximation for this problem and results showing the limits of our approach.
引用
收藏
页码:137 / 157
页数:20
相关论文
共 50 条