Maximum Series-Parallel Subgraph

被引:0
作者
Gruia Călinescu
Cristina G. Fernandes
Hemanshu Kaul
Alexander Zelikovsky
机构
[1] Illinois Institute of Technology,Department of Computer Science
[2] University of São Paulo,Department of Computer Science
[3] Illinois Institute of Technology,Department of Applied Mathematics
[4] Georgia State University,Department of Computer Science
来源
Algorithmica | 2012年 / 63卷
关键词
Series-parallel graph; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the NP-hard problem of, given a simple graph G, to find a series-parallel subgraph of G with the maximum number of edges. The algorithm that, given a connected graph G, outputs a spanning tree of G, is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{2}$\end{document}-approximation. Indeed, if n is the number of vertices in G, any spanning tree in G has n−1 edges and any series-parallel graph on n vertices has at most 2n−3 edges. We present a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{7}{12}$\end{document}-approximation for this problem and results showing the limits of our approach.
引用
收藏
页码:137 / 157
页数:20
相关论文
共 13 条
[1]  
Berman P.(1994)Improved approximations for the Steiner tree problem J. Algorithms 17 381-408
[2]  
Ramaiyer V.(1997)On spanning 2-trees in a graph Discrete Appl. Math. 74 203-216
[3]  
Cai L.(1993)On the spanning Discrete Appl. Math. 44 139-156
[4]  
Cai L.(1998)-tree problem J. Algorithms 27 269-302
[5]  
Maffray F.(2003)A better approximation algorithm for finding planar subgraphs Algorithmica 36 179-205
[6]  
Călinescu G.(undefined)A new approximation algorithm for finding heavy planar subgraphs undefined undefined undefined-undefined
[7]  
Fernandes C.G.(undefined)undefined undefined undefined undefined-undefined
[8]  
Finkler U.(undefined)undefined undefined undefined undefined-undefined
[9]  
Karloff H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Călinescu G.(undefined)undefined undefined undefined undefined-undefined