Towards dimension expanders over finite fields

被引:0
作者
Zeev Dvir
Amir Shpilka
机构
[1] Princeton University,Dept. of Mathematics Dept. of Computer Science
[2] Technion - Israel Institute of Technology,Faculty of Computer Science
来源
Combinatorica | 2011年 / 31卷
关键词
05E99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the problem of explicitly constructing a dimension expander raised by [3]: Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^n $\end{document} be the n dimensional linear space over the field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}$\end{document}. Find a small (ideally constant) set of linear transformations from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^n $\end{document} to itself {Ai}i∈I such that for every linear subspace V ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}^n $\end{document} of dimension dim(V)<n/2 we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dim \left( {\sum\limits_{i \in I} {A_i (V)} } \right) \geqslant (1 + \alpha ) \cdot \dim (V),$\end{document} where α>0 is some constant. In other words, the dimension of the subspace spanned by {Ai(V)}i∈I should be at least (1+α)·dim(V). For fields of characteristic zero Lubotzky and Zelmanov [10] completely solved the problem by exhibiting a set of matrices, of size independent of n, having the dimension expansion property. In this paper we consider the finite field version of the problem and obtain the following results. We give a constant number of matrices that expand the dimension of every subspace of dimension d<n/2 by a factor of (1+1/logn).We give a set of O<(logn) matrices with expanding factor of (1+α), for some constant α>0.
引用
收藏
页码:305 / 320
页数:15
相关论文
共 14 条
[1]  
Alon N.(1994)Random cayley graphs and expanders Random Structures and Algorithms 5 271-285
[2]  
Roichman Y.(1989)Small-diameter cayley graphs for finite simple groups Europ. J. Combinatorics 10 507-522
[3]  
Babai L.(2007)On the construction of affine extractors Geometric And Functional Analysis 17 33-57
[4]  
Kantor W. M.(2008)Deterministic extractors for affine sources over large fields Combinatorica 28 415-440
[5]  
Lubotsky A.(2008)Dimension expanders Journal of Algebra 319 730-738
[6]  
Bourgain J.(2004)Expanders in group algebras Combinatorica 24 659-680
[7]  
Gabizon A.(2008)Derandomizing the ahlswede-winter matrix-valued chernoff bound using pessimistic estimators, and applications Theory of Computing 4 53-76
[8]  
Raz R.(undefined)undefined undefined undefined undefined-undefined
[9]  
Lubotzky A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Zelmanov Y.(undefined)undefined undefined undefined undefined-undefined