Exact traveling wave solutions and dynamical behavior for the (n + 1)-dimensional multiple sine-Gordon equation

被引:0
作者
Ji-bin Li
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Kunming University of Science and Technology,undefined
来源
Science in China Series A: Mathematics | 2007年 / 50卷
关键词
nonlinear wave; bifurcation; exact explicit traveling wave solution; double sine-Gordon equation; multiple sine-Gordon equation; 35B10; 35L70; 35Q51;
D O I
暂无
中图分类号
学科分类号
摘要
Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. For the double sine-Gordon equation, the exact explicit parametric representations of the bounded traveling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.
引用
收藏
页码:153 / 164
页数:11
相关论文
共 7 条
  • [1] Li J. B.(2005)Bounded travelling wave solutions for the ( Chaos, Solitons and Fractals 25 1037-1047
  • [2] Li M.(2006) + 1)-dimensional sine-and sinh-Gordon equations Physics Letter A 350 367-370
  • [3] Wazwaz A. M.(2000)The tanh method and a variable separated ODE method for solving double sine-Gordon equation Appl Math Modeling 25 41-56
  • [4] Li J. B.(2002)Smooth and non-smooth travelling waves in a nonlinearly dispersive equation Chin Ann of Math 23B 397-418
  • [5] Liu Z. R.(undefined)Travelling wave solutions for a class of nonlinear dispersive equations undefined undefined undefined-undefined
  • [6] Li J. B.(undefined)undefined undefined undefined undefined-undefined
  • [7] Liu Z. R.(undefined)undefined undefined undefined undefined-undefined