Local ratio method on partial set multi-cover

被引:0
作者
Yingli Ran
Yishuo Shi
Zhao Zhang
机构
[1] Xinjiang University,College of Mathematics and System Sciences
[2] Zhejiang Normal University,College of Mathematics Physics and Information Engineering
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Partial set multicover; Local ratio; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the minimum partial set multi-cover problem (PSMC). Given an element set E, a collection of subsets S⊆2E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}\subseteq 2^E$$\end{document}, a cost cS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_S$$\end{document} on each set S∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in {\mathcal {S}}$$\end{document}, a covering requirement re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} for each element e∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E$$\end{document}, and an integer k, the PSMC problem is to find a sub-collection F⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}\subseteq {\mathcal {S}}$$\end{document} to fully cover at least k elements such that the cost of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is as small as possible, where element e is fully covered by F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} if it belongs to at least re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} sets of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document}. This paper presents an approximation algorithm using local ratio method achieving performance ratio maxΔk1f-rmin+rmaxrmin,1ρ+frmin+1rmax-1ρrmax-1,1ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \left\{ \frac{\Delta }{k}\left( \frac{1}{f-r_{\min }}+\frac{r_{\max }}{r_{\min }}\right) ,\frac{1}{\rho }+\frac{f}{r_{\min }}+\frac{1}{r_{\max }}-\frac{1}{\rho r_{\max }}-1,\frac{1}{\rho }\right\} $$\end{document}, where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the size of a maximum set, f is the maximum number of sets containing a common element, ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is the minimum percentage of elements required to be fully covered during iterations of the algorithm, and rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }$$\end{document} and rmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\min }$$\end{document} are the maximum and the minimum covering requirement, respectively. In particular, when rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }$$\end{document} is a constant, the first term can be omitted. Notice that our ratio coincides with the classic ratio f for both the set multi-cover problem (in which case k=|E|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=|E|$$\end{document}) and the partial set single-cover problem (in which case rmax=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }=1$$\end{document}). However, when k<|E|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k<|E|$$\end{document} and rmax>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }>1$$\end{document}, the ratio might be as large as Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (n)$$\end{document}. This result shows an interesting “shock wave like” feature of approximating PSMC. The purpose of this paper is trying to arouse some interest in such a feature and attract more work on this challenging problem.
引用
收藏
页码:302 / 313
页数:11
相关论文
共 37 条
  • [1] Bar-Yehuda R(1985)A local-ratio theorem for approximating the weighted vertex cover problem Ann Discret Math 25 27-46
  • [2] Even S(2001)Using homogeneous weights for approximating the partial cover problem J Algorithms 39 137-144
  • [3] Bar-Yehuda R(1979)A greedy heuristic for the set-covering problem Math Oper Res 4 233-235
  • [4] Chvatal V(2014)On the approximability of positive influence dominating set in social networks J Comb Optim 27 487-503
  • [5] Dinh TN(1982)Worst-case analysis of greedy heuristics for integer programming with nonnegative data Math Oper Res 7 515-531
  • [6] Shen Y(1982)On the greedy heuristic for continuous covering and packing problems SIAM J Algeb Discret Methods 3 584-591
  • [7] Nguyen DT(2004)Approximation algorithms for partial covering problems J Algorithms 53 55-84
  • [8] Thai MT(1982)Approximation algorithms for the set covering and vertex cover problems SIAM J Comput 11 555-556
  • [9] Dobson G(2003)Approximating covering integer programs with multiplicity constraints Discret Appl Math 129 461-473
  • [10] Fisher ML(2005)Approximation algorithms for covering/packing integer programs J Comput Syst Sci 71 495-505