Exponential stability of a porous thermoelastic system with Gurtin–Pipkin thermal law

被引:0
作者
Abdelfeteh Fareh
机构
[1] University of El Oued,Laboratory of Operators Theory and PDEs: Foundations and Applications, Faculty of Exact Sciences
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Porous thermoelasticity; Gurtin–Pipkin law; Contraction semigroup; Exponential stability; 35B40; 47D03; 74D05; 74F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a one-dimensional porous thermoelastic system with hereditary heat conduction. Existence and uniqueness of a solution are obtained by the use of Lumer–Phillips and Lax–Milgram theorems. Using a semigroup approach, we prove under some assumptions on the derivative of the heat-flux kernel, that the solution of the system decays exponentially without any assumption on the wave speeds. This result extends the results of Messaoudi and Fareh (Discrete Contin Dyn Syst B 20(2):599–612, 2015) and Muñoz Rivera and Quintanilla (J Math Anal Appl 338:1296–1309, 2008) to a more general case of heat conduction.
引用
收藏
相关论文
共 50 条
  • [31] Exponential stability of a network of elastic and thermoelastic materials
    Shel, Farhat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (08) : 869 - 879
  • [32] Exponential stabilization of swelling porous systems with thermoelastic damping
    Apalara, Tijani A.
    Yusuf, Moruf O.
    Mukiawa, Soh E.
    Almutairi, Ohud B.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (01)
  • [33] Exponential stability of a coupled wave system with thermal effects
    Zhang, Li
    Liu, Wenjun
    An, Yanning
    Cao, Xinxin
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 2191 - 2207
  • [34] Exponential stability and analyticity of abstract linear thermoelastic systems
    Liu, KS
    Liu, ZY
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (06): : 885 - 904
  • [35] On Exponential Stability for Thermoelastic Plates: Comparison and Singular Limits
    Munoz Rivera, J. E.
    Racke, R.
    Sepulveda, M.
    Vera Villagran, O.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) : 1045 - 1081
  • [36] Exponential stability for nonlinear thermoelastic equations with second sound
    Qin, Yuming
    Ma, Zhiyong
    Yang, Xinguang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2502 - 2513
  • [37] On the existence and exponential decay rate of swelling porous thermoelastic system of Lord-Shulman type
    Apalara, Tijani A.
    Enyi, Cyril D.
    Khan, Yasir
    Ige, Aminat O.
    JOURNAL OF THERMAL STRESSES, 2024, 47 (07) : 937 - 958
  • [38] On Exponential Stability for Thermoelastic Plates: Comparison and Singular Limits
    J. E. Muñoz Rivera
    R. Racke
    M. Sepúlveda
    O. Vera Villagrán
    Applied Mathematics & Optimization, 2021, 84 : 1045 - 1081
  • [39] ASYMPTOTIC STABILITY OF POROUS THERMOELASTIC SYSTEM WITH INFINITE HISTORY, MICROTEMPERATURES EFFECTS AND VARYING DELAY
    Djeradi, F. S.
    Yazid, F.
    Chougui, N.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2023, 11 (03): : 22 - 47
  • [40] Exponential stability of a linear viscoelastic bar with thermal memory (*)
    Giorgi C.
    Naso M.G.
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 45 - 66