Boundary-Value Problems with Control for Fredholm Integral Equations with Degenerate Kernels in Banach Spaces

被引:0
作者
Zhuravlev V.P. [1 ]
Fomin N.P. [1 ]
机构
[1] Polissya National University, Staryi Ave., 7, Zhytomyr
关键词
D O I
10.1007/s10958-022-06076-4
中图分类号
学科分类号
摘要
We establish conditions for the existence of solutions of boundary-value problems with control for the Fredholm integral equations with degenerate kernels in Banach spaces and determine the general form of these solutions. We also find the general form of control for which these solutions exist. The problem is solved by using the theory of generalized inversion of Fredholm integral operators with degenerate kernels in Banach spaces and pseudoinversion of Fredholm integral operators with degenerate kernels in finite-dimensional spaces. © 2022, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:651 / 668
页数:17
相关论文
共 50 条
[41]   REDUCTION OF BOUNDARY VALUE PROBLEMS TO FREDHOLM INTEGRAL EQUATIONS OF SECOND KIND [J].
WILLIAMS, WE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1962, 13 :133-&
[42]   Degenerate nonlinear boundary-value problems [J].
O. A. Boichuk ;
L. M. Shehda .
Ukrainian Mathematical Journal, 2009, 61 :1387-1403
[43]   Degenerate nonlinear boundary-value problems [J].
Boichuk, O. A. ;
Shehda, L. M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (09) :1387-1403
[44]   Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces [J].
O. M. Atlasiuk ;
V. A. Mikhailets .
Ukrainian Mathematical Journal, 2019, 70 :1677-1687
[45]   Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces [J].
Atlasiuk, O. M. ;
Mikhailets, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) :1677-1687
[46]   Potential theory: reformulating boundary-value problems as integral equations [J].
Farlow, S. J. .
International Journal of Mathematical Education in Science and Technology, 29 (01)
[47]   Linear Boundary-Value Problems for Weakly Singular Integral Equations [J].
Boichuk O.A. ;
Feruk V.A. .
Journal of Mathematical Sciences, 2020, 247 (2) :248-257
[49]   WEAKLY PERTURBED BOUNDARY-VALUE PROBLEMS FOR DIFFERENTIAL EQUATIONS IN A BANACH SPACE [J].
Boichuk, O. A. ;
Panasenko, E. V. .
NONLINEAR OSCILLATIONS, 2011, 13 (03) :311-324
[50]   BOUNDARY-VALUE PROBLEMS FOR DIFFERENTIAL-EQUATIONS IN BANACH-SPACE [J].
WARD, JR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 70 (02) :589-598