The Spatially Variant Fractional Laplacian

被引:0
作者
Andrea N. Ceretani
Carlos N. Rautenberg
机构
[1] CONICET,Department of Mathematics of the Faculty of Exact and Natural Sciences, University of Buenos Aires, and Mathematics Research Institute “Luis A. Santaló” (IMAS)
[2] George Mason University,Department of Mathematical Sciences and the Center for Mathematics and Artificial Intelligence (CMAI)
来源
Fractional Calculus and Applied Analysis | 2023年 / 26卷
关键词
Fractional order Sobolev space; Spatially varying exponent; Trace theorem; Fractional Laplacian with variable exponent; Hardy-type inequalities; 35S15; 26A33; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a definition of the fractional Laplacian (-Δ)s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\varDelta )^{s(\cdot )}$$\end{document} with spatially variable order s:Ω→[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s:\varOmega \rightarrow [0,1]$$\end{document} and study the solvability of the associated Poisson problem on a bounded domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. The initial motivation arises from the extension results of Caffarelli and Silvestre, and Stinga and Torrea; however the analytical tools and approaches developed here are new. For instance, in some cases we allow the variable order s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(\cdot )$$\end{document} to attain the values 0 and 1 leading to a framework on weighted Sobolev spaces with non-Muckenhoupt weights. Initially, and under minimal assumptions, the operator (-Δ)s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\varDelta )^{s(\cdot )}$$\end{document} is identified as the Lagrange multiplier corresponding to an optimization problem; and its domain is determined as a quotient space of weighted Sobolev spaces. The well-posedness of the associated Poisson problem is then obtained for data in the dual of this quotient space. Subsequently, two trace regularity results are established, allowing to partially characterize functions in the aforementioned quotient space whenever a Poincaré type inequality is available. Precise examples are provided where such inequality holds, and in this case the domain of the operator (-Δ)s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\varDelta )^{s(\cdot )}$$\end{document} is identified with a subset of a weighted Sobolev space with spatially variant smoothness s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(\cdot )$$\end{document}. The latter further allows to prove the well-posedness of the Poisson problem assuming functional regularity of the data.
引用
收藏
页码:2837 / 2873
页数:36
相关论文
共 49 条
[1]  
Antil H(2019)Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications SIAM Journal on Mathematical Analysis 51 2479-2503
[2]  
Rautenberg CN(2005)Hölder continuity of harmonic functions with respect to operators of variable order Communications in Partial Differential Equations 30 1249-1259
[3]  
Bass R(2005)Interpolation, embedding, and extension of spaces of functions of variable smoothness Proceedings of the Steklov Institute of Mathematics 248 47-58
[4]  
Kassmann M(2007)An extension problem related to the fractional Laplacian Communications in Partial Differential Equations 32 1245-1260
[5]  
Besov O(2007)Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian Inventiones Mathematicae 171 425-461
[6]  
Caffarelli L(2011)Regularity of radial extremal solutions for some non-local semilinear equations Communications in Partial Differential Equations 36 1353-1384
[7]  
Silvestre L(2022)On the fractional Laplacian of variable order Fractional Calculus and Applied Analysis 25 15-28
[8]  
Caffarelli L(2012)Hitchhiker’s guide to the fractional Sobolev spaces Bulletin des Sciences Mathematiques 136 521-573
[9]  
Salsa S(2009)Weighted Sobolev spaces and embedding theorems Transactions of the American Mathematical Society 361 3829-3850
[10]  
Silvestre L(1984)How to define reasonably weighted Sobolev spaces Commentationes Mathematicae Universitatis Carolinae 25 537-554