A restriction theorem for oscillatory integral operator with certain polynomial phase

被引:0
作者
Shaozhen Xu
Dunyan Yan
机构
[1] University of Chinese Academy of Sciences,School of Mathematical Sciences
来源
Frontiers of Mathematics in China | 2017年 / 12卷
关键词
Restriction theorem; oscillatory integral operator; boundedness; optimal estimate; necessary condition; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the oscillatory integral operator Tα,mf(x)=∫ℝnei(x1α1y1m+⋯x1αnynm)f(y)dy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{\alpha ,m}}f\left( x \right) = {\smallint _{{\mathbb{R}^n}}}{e^i}\left( {x_1^{{\alpha _1}}y_1^m + \cdots x_1^{{\alpha _n}}y_n^m} \right)f\left( y \right)dy$$\end{document} where the function f is a Schwartz function. In this paper, the restriction theorem on Sn-1 for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.
引用
收藏
页码:967 / 980
页数:13
相关论文
共 17 条
  • [1] Bennett J(2006)On the multilinear restriction and Kakeya conjectures Acta Math 196 261-302
  • [2] Carbery A(2011)Bounds on oscillatory integral operators based on multilinear estimates Geom Funct Anal 21 1239-1295
  • [3] Tao T(2016)A restriction estimate using polynomial partitioning J Amer Math Soc 29 371-413
  • [4] Bourgain J(2008)From harmonic analysis to arithmetic combinatorics Bull Amer Math Soc (NS) 45 77-115
  • [5] Guth L(1997)The Newton polyhedron and oscillatory integral operators Acta Math 179 105-152
  • [6] Guth L(1999)The Bochner-Riesz conjecture implies the restriction conjecture Duke Math J 96 363-376
  • [7] Laba I(2003)A sharp bilinear restriction estimate for paraboloids Geom Funct Anal 13 1359-1384
  • [8] Phong D H(1998)A bilinear approach to the restriction and Kakeya conjectures J Amer Math Soc 11 967-1000
  • [9] Stein E M(1975)A restriction theorem for the Fourier transform Bull Amer Math Soc 81 477-478
  • [10] Tao T(2001)A sharp bilinear cone restriction estimate Ann of Math (2) 153 661-698