Infinitely many solutions for Kirchhoff equations with sign-changing potential and Hartree nonlinearity

被引:0
作者
Guofeng Che
Haibo Chen
机构
[1] Central South University,School of Mathematics and Statistics
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Kirchhoff equations; Sign-changing potential; Hartree-type nonlinearity; Symmetric mountain pass theorem; Variational methods; 35B38; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the following Kirchhoff-type equations: -(a+b∫R3|∇u|2dx)Δu+V(x)u+μϕ|u|p-2u=f(x,u)+g(x,u),inR3,(-Δ)α2ϕ=μ|u|p,inR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\big (a+b\int _{\mathbb {R}^{3}}|\nabla u|^{2}\mathrm {d}x\big )\Delta u+ V(x)u+\mu \phi |u|^{p-2}u=f(x, u)+g(x,u), &{} \text{ in } \mathbb {R}^{3},\\ (-\Delta )^{\frac{\alpha }{2}} \phi = \mu |u|^{p}, &{} \text{ in } \mathbb {R}^{3},\\ \end{array} \right. \end{aligned}$$\end{document}where a>0,b,μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0,~b,~\mu \ge 0$$\end{document} are constants, α∈(0,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,3)$$\end{document}, p∈[2,3+2α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [2,3+2\alpha )$$\end{document}, the potential V(x) may be unbounded from below and ϕ|u|p-2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi |u|^{p-2}u$$\end{document} is a Hartree-type nonlinearity. Under some mild conditions on V(x), f(x, u) and g(x, u), we prove that the above system has infinitely many nontrivial solutions. Specially, our results cover the general Schrödinger equations, the Kirchhoff equations and the Schrödinger–Poisson system.
引用
收藏
相关论文
共 59 条
[1]  
Liu S(2014)Existence of ground state solutions for the Schrödinger–Poisson systems Appl. Math. Comput. 244 312-323
[2]  
Guo S(2015)On the nonlinear Schrödinger–Poisson systems with sign-changing potential Z. Angew. Math. Phys. 66 1649-1669
[3]  
Zhang Z(2008)Ground state solutions for the nonlinear Schrödinger–Maxwell equations J. Math. Anal. Appl. 345 90-108
[4]  
Sun J(2005)A positive solution for a nonlinear Schrödinger–Poisson system on Indiana Univ. Math. J. 54 443-464
[5]  
Wu T(2011)Schrödinger–Poisson system with steep potential well J. Differ. Equ. 251 582-608
[6]  
Azzollini A(2014)Multiple solutions for superlinear Schrödinger–Poisson system with sign-changing potential and nonlinearity Comput. Math. Appl. 68 1982-1990
[7]  
Pomponio A(2017)Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials Calc. Var. Partial Differ. Equat. 54 110-158
[8]  
Jeanjean L(2018)Ground state solutions for the nonlinear Schrödinger–Poisson systems with sum of periodic and vanishing potentials Math. Meth. Appl. Sci. 41 144-824
[9]  
Tanaka K(2014)Multipicity of small negative-energy solutions for a class of nonlinear Schrödinger–Poisson systems Appl. Math. Comput. 243 817-26
[10]  
Jiang Y(2018)Multiple solutions for the Schröinger equations with sign-changing potential and Hartree nonlinearity Appl. Math. Lett. 81 21-3380