Subgame Maxmin Strategies in Zero-Sum Stochastic Games with Tolerance Levels

被引:0
作者
János Flesch
P. Jean-Jacques Herings
Jasmine Maes
Arkadi Predtetchinski
机构
[1] Maastricht University,Department of Quantitative Economics
[2] Maastricht University,Department of Economics
来源
Dynamic Games and Applications | 2021年 / 11卷
关键词
Stochastic games; Zero-sum games; Subgame ; -maxmin strategies; C72; C73;
D O I
暂无
中图分类号
学科分类号
摘要
We study subgame ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-maxmin strategies in two-player zero-sum stochastic games with a countable state space, finite action spaces, and a bounded and universally measurable payoff function. Here, ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} denotes the tolerance function that assigns a nonnegative tolerated error level to every subgame. Subgame ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-maxmin strategies are strategies of the maximizing player that guarantee the lower value in every subgame within the subgame-dependent tolerance level as given by ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. First, we provide necessary and sufficient conditions for a strategy to be a subgame ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-maxmin strategy. As a special case, we obtain a characterization for subgame maxmin strategies, i.e., strategies that exactly guarantee the lower value at every subgame. Secondly, we present sufficient conditions for the existence of a subgame ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-maxmin strategy. Finally, we show the possibly surprising result that each game admits a strictly positive tolerance function ϕ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^*$$\end{document} with the following property: if a player has a subgame ϕ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^*$$\end{document}-maxmin strategy, then he has a subgame maxmin strategy too. As a consequence, the existence of a subgame ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-maxmin strategy for every positive tolerance function ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is equivalent to the existence of a subgame maxmin strategy.
引用
收藏
页码:704 / 737
页数:33
相关论文
共 29 条
  • [1] Abate A(2014)On the effect of perturbation of conditional probabilities in total variation Stat Probab Lett 88 1-8
  • [2] Redig F(1968)The big match Ann Math Stat 39 159-163
  • [3] Tkachev I(2016)On refinements of subgame perfect Int J Game Theory 45 523-542
  • [4] Blackwell D(2018)-equilibrium J Appl Probab 55 728-741
  • [5] Ferguson T(2013)Characterization and simplification of optimal strategies in positive stochastic games Dyn Games Appl 3 162-171
  • [6] Flesch J(2005)Two-person zero-sum stochastic games with semicontinuous payoff Games Econ Behav 53 126-140
  • [7] Predtetchinski A(1998)Contemporaneous perfect epsilon-equilibria Int J Game Theory 27 257-267
  • [8] Flesch J(1998)Finitely additive stochastic games with Borel measurable payoffs J Symb Logic 63 1565-1581
  • [9] Predtetchinski A(2015)The determinacy of Blackwell games Dyn Games Appl 5 120-135
  • [10] Sudderth W(1980)Correlated equilibria in stochastic games with Borel measurable payoffs J Econ Theory 22 136-154