Computing the Real Zeros of Hypergeometric Functions

被引:0
作者
Amparo Gil
Wolfram Koepf
Javier Segura
机构
[1] Universidad de Cantabria,Depto. de Matemáticas, Estadística y Computación
[2] Universität Kassel,FB 17 Mathematik
来源
Numerical Algorithms | 2004年 / 36卷
关键词
zeros; hypergeometric functions; fixed point iterations; numerical algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient methods for the computation of the real zeros of hypergeometric functions which are solutions of second order ODEs are described. These methods are based on global fixed point iterations which apply to families of functions satisfying first order linear difference differential equations with continuous coefficients. In order to compute the zeros of arbitrary solutions of the hypergeometric equations, we have at our disposal several different sets of difference differential equations (DDE). We analyze the behavior of these different sets regarding the rate of convergence of the associated fixed point iteration. It is shown how combinations of different sets of DDEs, depending on the range of parameters and the dependent variable, is able to produce efficient methods for the computation of zeros with a fairly uniform convergence rate for each zero.
引用
收藏
页码:113 / 134
页数:21
相关论文
共 7 条
  • [1] Gil A.(2003)Computing zeros and turning points of linear homogeneous second order ODEs SIAM J. Numer. Anal. 41 827-855
  • [2] Segura J.(2003)A combined symbolic and numerical algorithm for the computation of zeros of orthogonal polynomials and special functions J. Symbol. Comp. 35 465-485
  • [3] Gil A.(2002)The zeros of special functions from a fixed point method SIAM J. Numer. Anal. 40 114-133
  • [4] Segura J.(1979)An algorithm with Algol 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives J. Comput. Phys. 32 270-270
  • [5] Segura J.(1990)A fast algorithm for proving terminating hypergeometric identities Discrete Math. 80 207-211
  • [6] Temme N.M.(undefined)undefined undefined undefined undefined-undefined
  • [7] Zeilberger D.(undefined)undefined undefined undefined undefined-undefined