Sonine-Dimovski transform and spectral synthesis associated with the hyper-Bessel operator on the complex plane

被引:0
|
作者
Lassad Bennasr
机构
[1] Imam Abdulrahman Bin Faisal University,Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies
关键词
Generalized fractional calculus; Hyper-Bessel operators; Hyper-Bessel functions; Convolution; Generalized Fourier transform; Transmutation operators; Invariant subspace; Spectral synthesis; 26A33 (primary); 34A25; 33C10; 30B60; 44A05; 44A35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the hyper-Bessel operator of order r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document}: Bα:=1zr-1∏i=1r-1(zDz+(rαi+1))Dz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B_{\alpha }:= \frac{1}{z^{r-1}}\prod _{i=1}^{r-1} \big ( zD_z+({ r \alpha _{i} + 1})\big )D_z, \end{aligned}$$\end{document}where α=(α1,…,αr-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =(\alpha _1,\ldots ,\alpha _{r-1})$$\end{document} is a real multi-index such that αk≥-1+k/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _k \ge - 1 + {k}/{r}$$\end{document} for k=1,...,r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,...,r - 1$$\end{document} and Dz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_z$$\end{document} is the usual derivative in complex plane. We characterize the transmutation operators between two hyper-Bessel operators, namely from Bβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\beta $$\end{document} into Bα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} on the space Hr(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_r(\mathbb {C})$$\end{document} of r-even and entire functions with the help of the Sonine-Dimovski transform and we prove the spectral synthesis property associated with the operator Bα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} for the space Hr(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_r(\mathbb {C})$$\end{document}. Let us note that the hyper-Bessel operator Bα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\alpha }$$\end{document} and the related transmutation operators can be also represented as operators of the generalized fractional calculus.
引用
收藏
页码:1852 / 1872
页数:20
相关论文
共 1 条