Solvability of the boundary-value problem for a variable-order differential equation on a geometric graph

被引:0
作者
K. P. Lazarev
T. V. Beloglazova
机构
[1] Voronezh Military Aviation Engineering Institute,
来源
Mathematical Notes | 2006年 / 80卷
关键词
geometric graph (network ); ordinary differential equation on a graph; boundary-value problem; nondegeneracy; degeneracy; maximum principle;
D O I
暂无
中图分类号
学科分类号
摘要
The solvability of the boundary-value problem for a string-beam model is studied. The model is described by an equation of orders 2 or 4 on dirrerent edges of an arbitrary graph. Criteria for the problem to be degenerate and nondegenerate are obtained; in particular, it is proved that the nondegeneracy of the problem is equivalent to the maximum principle.
引用
收藏
页码:57 / 64
页数:7
相关论文
共 33 条
[1]  
Kuchment P.(2002)Graph models for waves in thin structures Waves Random Media 12 1-24
[2]  
Pokornyi Yu. V.(2001)Nonoscillation of ordinary differential equations and inequalities on spatial networks Differentsial’nye Uravneniya 37 661-671
[3]  
Penkin O. M.(1988)A boundary-value problem on a graph Differentsial’nye Uravneniya 24 701-703
[4]  
Pokornyi Yu. V.(1989)Sturm theorems for equations on graphs Dokl. Akad. Nauk SSSR 309 1306-1308
[5]  
Pokornyi Yu. V.(1989)Comparison theorems for equations on graphs Differentsial’nye Uravneniya 25 1141-1150
[6]  
Penkin O. M.(1993)Control of planar networks of Timoshenko beams SIAM J. Control Optim. 31 780-811
[7]  
Pokornyi Yu. V.(1998)Spectre des réseaux de poutres C. R. Acad. Sci. Paris Ser. I Math. 326 1249-1254
[8]  
Penkin O. M.(1999)Control of network of Euler-Bernoulli beams ESAIM-COCV 4 57-82
[9]  
Lagnese J. E.(1993)Modeling of dynamic networks of thin thermoelastic beams Math. Meth. Appl. Sci. 16 327-358
[10]  
Leugering G.(2004)Fourth-order differential equations on geometric graphs J. Math. Sci. 119 719-739