共 50 条
Hybrid neural network for prediction of CO2 solubility in monoethanolamine and diethanolamine solutions
被引:0
|作者:
Mohd Azlan Hussain
Mohamed Kheireddine Aroua
Chun-Yang Yin
Ramzalina Abd Rahman
Noor Asriah Ramli
机构:
[1] University of Malaya,Department of Chemical Engineering, Faculty of Engineering
[2] Universiti Teknologi MARA,Faculty of Chemical Engineering
来源:
Korean Journal of Chemical Engineering
|
2010年
/
27卷
关键词:
Diethanolamine;
Monoethanolamine;
CO;
Solubility;
Kent-Eisenberg Model;
Hybrid Neural Network;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The solubility of CO2 in single monoethanolamine (MEA) and diethanolamine (DEA) solutions was predicted by a model developed based on the Kent-Eisenberg model in combination with a neural network. The combination forms a hybrid neural network (HNN) model. Activation functions used in this work were purelin, logsig and tansig. After training, testing and validation utilizing different numbers of hidden nodes, it was found that a neural network with a 3-15-1 configuration provided the best model to predict the deviation value of the loading input. The accuracy of data predicted by the HNN model was determined over a wide range of temperatures (0 to 120 °C), equilibrium CO2 partial pressures (0.01 to 6,895 kPa) and solution concentrations (0.5 to 5.0M). The HNN model could be used to accurately predict CO2 solubility in alkanolamine solutions since the predicted CO2 loading values from the model were in good agreement with experimental data.
引用
收藏
页码:1864 / 1867
页数:3
相关论文