Hybrid neural network for prediction of CO2 solubility in monoethanolamine and diethanolamine solutions

被引:0
|
作者
Mohd Azlan Hussain
Mohamed Kheireddine Aroua
Chun-Yang Yin
Ramzalina Abd Rahman
Noor Asriah Ramli
机构
[1] University of Malaya,Department of Chemical Engineering, Faculty of Engineering
[2] Universiti Teknologi MARA,Faculty of Chemical Engineering
来源
Korean Journal of Chemical Engineering | 2010年 / 27卷
关键词
Diethanolamine; Monoethanolamine; CO; Solubility; Kent-Eisenberg Model; Hybrid Neural Network;
D O I
暂无
中图分类号
学科分类号
摘要
The solubility of CO2 in single monoethanolamine (MEA) and diethanolamine (DEA) solutions was predicted by a model developed based on the Kent-Eisenberg model in combination with a neural network. The combination forms a hybrid neural network (HNN) model. Activation functions used in this work were purelin, logsig and tansig. After training, testing and validation utilizing different numbers of hidden nodes, it was found that a neural network with a 3-15-1 configuration provided the best model to predict the deviation value of the loading input. The accuracy of data predicted by the HNN model was determined over a wide range of temperatures (0 to 120 °C), equilibrium CO2 partial pressures (0.01 to 6,895 kPa) and solution concentrations (0.5 to 5.0M). The HNN model could be used to accurately predict CO2 solubility in alkanolamine solutions since the predicted CO2 loading values from the model were in good agreement with experimental data.
引用
收藏
页码:1864 / 1867
页数:3
相关论文
共 50 条
  • [1] Hybrid neural network for prediction of CO2 solubility in monoethanolamine and diethanolamine solutions
    Hussain, Mohd Azlan
    Aroua, Mohamed Kheireddine
    Yin, Chun-Yang
    Rahman, Ramzalina Abd
    Ramli, Noor Asriah
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (06) : 1864 - 1867
  • [2] Rapid prediction of CO2 solubility in aqueous solutions of diethanolamine and methyldiethanolamine
    Bahadori, Alireza
    Vuthaluru, Hari B.
    Mokhatab, Saeid
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (02) : 245 - 248
  • [3] Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions
    Hamzehie, M. E.
    Mazinani, S.
    Davardoost, F.
    Mokhtare, A.
    Najibi, H.
    Van der Bruggen, B.
    Darvishmanesh, S.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2014, 21 : 19 - 25
  • [4] Artificial neural network models for the prediction of CO2 solubility in aqueous amine solutions
    Chen, Guangying
    Luo, Xiao
    Zhang, Haiyan
    Fu, Kaiyun
    Liang, Zhiwu
    Rongwong, Wichitpan
    Tontiwachwuthikul, Paitoon
    Idem, Raphael
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 39 : 174 - 184
  • [5] Correlation and Prediction of Solubility of CO2 in Amine Aqueous Solutions
    Goharrokhi, Mahdi
    Taghikhani, Vahid
    Ghotbi, Cirous
    Safekordi, Ali Akbar
    Najibi, Hesam
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2010, 29 (01): : 111 - 124
  • [6] Monoethanolamine+2-methoxyethanol mixtures for CO2 capture: Density, viscosity and CO2 solubility
    Guo, Hui
    Hui, Li
    Shen, Shufeng
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2019, 132 : 155 - 163
  • [7] Solubility of CO2 in the solvent system (water plus monoethanolamine plus triethanolamine)
    Cheng, Ming-Der
    Caparanga, Alvin R.
    Soriano, Allan N.
    Li, Meng-Hui
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2010, 42 (03) : 342 - 347
  • [8] CO2 absorption rate and solubility in monoethanolamine/piperazine/water
    Dang, HY
    Rochelle, GT
    SEPARATION SCIENCE AND TECHNOLOGY, 2003, 38 (02) : 337 - 357
  • [9] Message passing neural network-based contribution analysis towards CO2 solubility prediction in ionic liquids
    Jun, Zhang
    Dai, Pan
    Kong, Zong Yang
    Yang, Ao
    Shen, Weifeng
    Wang, Qin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 364
  • [10] Prediction of CO2 solubility in aqueous amine solutions using machine learning method
    Liu, Bin
    Yu, Yanan
    Liu, Zijian
    Cui, Zhe
    Tian, Wende
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354