Birkhoff–James orthogonality and numerical radius inequalities of operator matrices

被引:0
|
作者
Arpita Mal
Kallol Paul
Jeet Sen
机构
[1] Jadavpur University,Department of Mathematics
来源
Monatshefte für Mathematik | 2022年 / 197卷
关键词
Birkhoff–James orthogonality; Numerical radius; Operator matrix; Primary 47A12; 15A60; Secondary 47L05;
D O I
暂无
中图分类号
学科分类号
摘要
We completely characterize Birkhoff-James orthogonality with respect to numerical radius norm in the space of bounded linear operators on a complex Hilbert space. As applications of the results obtained, we estimate lower bounds of numerical radius for n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} operator matrices, which improve on and generalize existing lower bounds. We also obtain a better lower bound of numerical radius for an upper triangular operator matrix.
引用
收藏
页码:717 / 731
页数:14
相关论文
共 50 条