Sparse-view image reconstruction in prospectively gated micro-CT for fast and low-dose imaging

被引:0
|
作者
Jonghwan Min
Gyuseong Cho
Seungryong Cho
Kyoungwoo Kim
机构
[1] Korea Advanced Institute of Science and Technology,Department of Nuclear and Quantum Engineering
[2] Nano Focus Ray (Co.,undefined
[3] Ltd.),undefined
来源
Journal of the Korean Physical Society | 2012年 / 60卷
关键词
Computed tomography; Animal imaging; Image reconstruction;
D O I
暂无
中图分类号
学科分类号
摘要
We conducted a feasibility study using a total-variation minimization algorithm for image reconstruction in prospectively gated micro computed tomography (micro-CT). The total-variation (TV) minimization algorithm exploits the sparseness of the image’s gradient magnitude and can successfully reconstruct CT images from undersampled data for which conventional analytic reconstruction algorithms fail. We implemented the algorithm and applied it to sparsely-sampled data for a mouse by using a prospectively gated micro-CT system. The images were successfully reconstructed, and an image similarity index was quantitatively calculated with respect to the reference images reconstructed from fully-sampled data. Compared to a conventional image reconstruction algorithm, the TV-minimization algorithm substantially reduced image inaccuracy related to the image artifacts.
引用
收藏
页码:1157 / 1160
页数:3
相关论文
共 50 条
  • [1] Sparse-view Image Reconstruction in Prospectively Gated Micro-CT for Fast and Low-dose Imaging
    Min, Jonghwan
    Cho, Gyuseong
    Cho, Seungryong
    Kim, Kyoungwoo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (07) : 1157 - 1160
  • [2] Low-Dose Micro-CT Imaging for Vascular Segmentation and Analysis Using Sparse-View Acquisitions
    Vandeghinste, Bert
    Vandenberghe, Stefaan
    Vanhove, Chris
    Staelens, Steven
    Van Holen, Roel
    PLOS ONE, 2013, 8 (07):
  • [3] Sparse-view image reconstruction in inverse-geometry CT (IGCT) for fast, low-dose, volumetric dental X-ray imaging
    D. K. Hong
    H. S. Cho
    J. E. Oh
    U. K. Je
    M. S. Lee
    H. J. Kim
    S. H. Lee
    Y. O. Park
    S. I. Choi
    Y. S. Koo
    H. M. Cho
    Journal of the Korean Physical Society, 2012, 61 : 2084 - 2090
  • [4] Sparse-view Image Reconstruction in Inverse-geometry CT (IGCT) for Fast, Low-dose, Volumetric Dental X-ray Imaging
    Hong, D. K.
    Cho, H. S.
    Oh, J. E.
    Je, U. K.
    Lee, M. S.
    Kim, H. J.
    Lee, S. H.
    Park, Y. O.
    Choi, S. I.
    Koo, Y. S.
    Cho, H. M.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (12) : 2084 - 2090
  • [5] Sparse-view statistical image reconstruction with improved total variation regularization for X-ray micro-CT imaging
    Mahmoudi, G.
    Fouladi, M. R.
    Ay, M. R.
    Rahmim, A.
    Ghadiri, H.
    JOURNAL OF INSTRUMENTATION, 2019, 14 (08):
  • [6] DDoCT: Morphology preserved dual-domain joint optimization for fast sparse-view low-dose CT imaging
    Li, Linxuan
    Zhang, Zhijie
    Li, Yongqing
    Wang, Yanxin
    Zhao, Wei
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [7] Sinogram interpolation for sparse-view micro-CT with deep learning neural network
    Dong, Xu
    Vekhande, Swapnil
    Cao, Guohua
    MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [8] Algorithm-Enabled Low-Dose Micro-CT Imaging
    Han, Xiao
    Bian, Junguo
    Eaker, Diane R.
    Kline, Timothy L.
    Sidky, Emil Y.
    Ritman, Erik L.
    Pan, Xiaochuan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (03) : 606 - 620
  • [9] Generalized deep iterative reconstruction for sparse-view CT imaging
    Su, Ting
    Cui, Zhuoxu
    Yang, Jiecheng
    Zhang, Yunxin
    Liu, Jian
    Zhu, Jiongtao
    Gao, Xiang
    Fang, Shibo
    Zheng, Hairong
    Ge, Yongshuai
    Liang, Dong
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (02)
  • [10] Waveletdomain dilated network for fast low-dose CT image reconstruction
    Li K.
    Zhang L.
    Xu H.
    Song H.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2020, 47 (04): : 86 - 93