Shape-preserving smoothing of 3-convex splines of degree 4

被引:0
作者
Prymak A.V. [1 ]
机构
[1] Shevchenko Kyiv National University, Kyiv
关键词
Absolute Constant;
D O I
10.1007/s11253-005-0193-8
中图分类号
学科分类号
摘要
For every 3-convex piecewise-polynomial function s of degree ≤4 with n equidistant knots on [0, 1] we construct a 3-convex spline s 1 (s 1 C (3)) of degree ≤4 with the same knots that satisfies the inequality ||S - S 1 || C0,1] ≤ ω 5 (s;1/n), where c is an absolute constant and ω 5 is the modulus of smoothness of the fifth order. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:331 / 339
页数:8
相关论文
共 12 条
[1]  
Roberts A.W., Varbeg D.E., Convex Functions, (1973)
[2]  
DeVore R.A., Monotone approximation by splines, SIAM J. Math. Anal., 8, 5, pp. 891-905, (1977)
[3]  
Beatson R.K., Convex approximation by splines, SIAM J. Math. Anal., 12, pp. 549-559, (1981)
[4]  
Hu Y.K., Convex approximation by quadratic splines, J. Approxim. Theor., 74, pp. 69-82, (1993)
[5]  
Kopotun K.A., Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials, Contstr. Approxim., 10, pp. 153-178, (1994)
[6]  
Shevchuk I.A., One construction of cubic convex spline, Proc. ICAOR, 1, pp. 357-368, (1997)
[7]  
Konovalov V.N., Leviatan D., Shape-preserving widths of Sobolev-type classes of s-monotone functions on a finite interval, Isr. J. Math., 133, pp. 239-268, (2003)
[8]  
Konovalov V.N., Leviatan D., Estimates on the approximation of 3-monotone function by 3-monotone quadratic splines, East J. Approxim., 7, pp. 333-349, (2001)
[9]  
Prymak A.V., Three-convex approximation by quadratic splines with arbitrary fixed knots, East J. Approxim., 8, 2, pp. 185-196, (2002)
[10]  
Leviatan D., Prymak A.V., On 3-monotone approximation by piecewise polynomials, J. Approxim. Theor., 133, pp. 97-121, (2005)