Trend analysis of variations in carbon stock using stock big data

被引:0
|
作者
Yanbin Wu
Yiqiang Guo
Lin Liu
Ni Huang
Li Wang
机构
[1] Hebei University of Economics and Business,College of Management Science and Engineering
[2] Ministry of Land and Resources,Land Consolidation and Rehabilitation Center
[3] Ministry of Land and Resources,Key Laboratory of Land Consolidation and Rehabilitation
[4] Shijiazhuang Engineering and Technology School,The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth
[5] Chinese Academy of Sciences,undefined
来源
Cluster Computing | 2017年 / 20卷
关键词
Land use; Carbon stock; Trend analysis; Big data;
D O I
暂无
中图分类号
学科分类号
摘要
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC (carbon equivalent), while those in Baixiang decreased by 0.63 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} and 1.22 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC, respectively.
引用
收藏
页码:989 / 1005
页数:16
相关论文
共 50 条
  • [41] Analysis of the driving role and impact of road construction on carbon stock
    Jia, Xingli
    Zhu, Jiyuan
    Li, Yongyi
    Wu, Wenbin
    Hu, Xiangyun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (25) : 67131 - 67149
  • [42] Stock Market Prediction with Big Data Through Hybridization of Data Mining and Optimized Neural Network Techniques
    Das, Debashish
    Sadiq, Ali Safa
    Ahmad, Noraziah Binti
    Lloret, Jaime
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2017, 29 (1-2) : 157 - 181
  • [43] Analysis of the driving role and impact of road construction on carbon stock
    Xingli Jia
    Jiyuan Zhu
    Yongyi Li
    Wenbin Wu
    Xiangyun Hu
    Environmental Science and Pollution Research, 2023, 30 : 67131 - 67149
  • [44] Stock Market Prediction Based on Big Data Using Deep Reinforcement Long Short-Term Memory Model
    Ishwarappa, K.
    Anuradha, J.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2022, 18 (02)
  • [45] Growing stock-based assessment of the carbon stock in the Belgian forest biomass
    Vande Walle, I
    Van Camp, N
    Perrin, D
    Lemeur, R
    Verheyen, K
    Van Wesemael, B
    Laitat, E
    ANNALS OF FOREST SCIENCE, 2005, 62 (08) : 853 - 864
  • [46] Academic research trend analysis based on big data technology
    Lin, Weiwei
    Zhang, Zilong
    Peng, Shaoliang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2019, 20 (01) : 31 - 39
  • [47] Forecasting Stock Prices using Social Media Analysis
    Coyne, Scott
    Madiraju, Praveen
    Coelho, Joseph
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 1031 - 1038
  • [48] Stock Price Prediction Using News Sentiment Analysis
    Mohan, Saloni
    Mullapudi, Sahitya
    Sammeta, Sudheer
    Vijayvergia, Parag
    Anastasiu, David C.
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), 2019, : 205 - 208
  • [49] CDFMR: A Distributed Statistical Analysis of Stock Market Data using MapReduce with Cumulative Distribution Function
    Dahiphale, Devendra
    Wadkar, Abhijeet
    Joshi, Karuna Pande
    2023 IEEE CLOUD SUMMIT, 2023, : 76 - 83
  • [50] A Study of Early Warning System in Volume Burst Risk Assessment of Stock with Big Data Platform
    Shih, Dong-Her
    Hsu, Hsiang-Li
    Shih, Po-Yuan
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 244 - 248