Trend analysis of variations in carbon stock using stock big data

被引:0
|
作者
Yanbin Wu
Yiqiang Guo
Lin Liu
Ni Huang
Li Wang
机构
[1] Hebei University of Economics and Business,College of Management Science and Engineering
[2] Ministry of Land and Resources,Land Consolidation and Rehabilitation Center
[3] Ministry of Land and Resources,Key Laboratory of Land Consolidation and Rehabilitation
[4] Shijiazhuang Engineering and Technology School,The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth
[5] Chinese Academy of Sciences,undefined
来源
Cluster Computing | 2017年 / 20卷
关键词
Land use; Carbon stock; Trend analysis; Big data;
D O I
暂无
中图分类号
学科分类号
摘要
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC (carbon equivalent), while those in Baixiang decreased by 0.63 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} and 1.22 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{4}$$\end{document} tC, respectively.
引用
收藏
页码:989 / 1005
页数:16
相关论文
共 50 条
  • [21] Temporal variations in carbon stock of Pinus roxburghii Sargent forests of Himachal Pradesh, India
    Shah, Shipra
    Sharma, Dharam Prakash
    Pala, Nazir A.
    Tripathi, Priyanka
    Kumar, Munesh
    JOURNAL OF MOUNTAIN SCIENCE, 2014, 11 (04) : 959 - 966
  • [22] A comprehensive review on sentiment analysis of social/web media big data for stock market prediction
    Shah, Pratham
    Desai, Kush
    Hada, Mrudani
    Parikh, Parth
    Champaneria, Malav
    Panchal, Dhyani
    Tanna, Mansi
    Shah, Manan
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (06) : 2011 - 2018
  • [23] Banking reputation and its impact on stock markets: a big data analysis through online comments
    Casado-Molina, Ana-Maria
    Rojas-de-Gracia, Maria-Mercedes
    Alarcon-Urbistondo, Pilar
    Ramos, Celia M. Q.
    INTERNATIONAL JOURNAL OF BANK MARKETING, 2025,
  • [24] A DT-SVM Strategy for Stock Futures Prediction with Big Data
    Wang, Dingxian
    Liu, Xiao
    Wang, Mengdi
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 1005 - 1012
  • [25] Forecasting of Stock Market by Combining Machine Learning and Big Data Analytics
    Dhas, J. L. Joneston
    Vigila, S. Maria Celestin
    Star, C. Ezhil
    SOFT COMPUTING SYSTEMS, ICSCS 2018, 2018, 837 : 385 - 395
  • [26] Deep Learning Based Forecasting in Stock Market with Big Data Analytics
    Sismanoglu, Gozde
    Onde, Mehmet Ali
    Kocer, Furkan
    Sahingoz, Ozgur Koray
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [27] A Highly Efficient Big Data Mining Algorithm Based on Stock Market
    Yang, Jinfei
    Li, Jiajia
    Xu, Qingzhen
    INTERNATIONAL JOURNAL OF GRID AND HIGH PERFORMANCE COMPUTING, 2018, 10 (02) : 14 - 33
  • [28] Variations of carbon stock with forest types in subalpine region of southwestern China
    Zhang, Yuandong
    Gu, Fengxue
    Liu, Shirong
    Liu, Yanchun
    Li, Chao
    FOREST ECOLOGY AND MANAGEMENT, 2013, 300 : 88 - 95
  • [29] Stock Trend Analysis Based on Feature Rank by Partial Least Squares
    Zhu, Zhibo
    Peng, Qinke
    Sun, Shiquan
    Li, Zhi
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 3003 - 3008
  • [30] Analysis of Annual Spatiotemporal Variations in Carbon Stock in the Urban Agglomeration of the Middle Yangtze River Basin, China
    Du, Zhenbo
    Ou, Cong
    An, Yue
    Chen, Jingbo
    Meng, Yu
    Chen, Fen
    LAND, 2024, 13 (12)