Homogeneous q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-difference equations and generating functions for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-hypergeometric polynomials

被引:0
作者
Jian Cao
机构
[1] Hangzhou Normal University,Department of Mathematics
[2] Zhejiang University,Department of Mathematics
关键词
Homogeneous ; -difference equation; Generating function; Verma–Jain polynomial; -Hypergeometric polynomials; Srivastava–Agarwal type generating function; Andrews–Askey integral; 05A30; 11B65; 33D15; 33D45; 39A13;
D O I
10.1007/s11139-015-9676-x
中图分类号
学科分类号
摘要
In this paper we show how to deduce several types of generating functions for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-hypergeometric polynomials by the method of homogeneous q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-difference equations. In addition, we build relations between transformation formulas and homogeneous q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-difference equations. Moreover, we generalize the Andrews–Askey integral from the perspective of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-integrals by the method of homogeneous q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-difference equations.
引用
收藏
页码:177 / 192
页数:15
相关论文
共 34 条
[1]  
Al-Salam WA(1965)Some orthogonal Math. Nachr. 30 47-61
[2]  
Carlitz L(1974)-polynomials SIAM Rev. 16 441-484
[3]  
Andrews GE(1981)Applications of basic hypergeometric series Proc. Am. Math. Soc. 81 97-100
[4]  
Andrews GE(2012)Another J. Math. Anal. Appl. 396 351-362
[5]  
Askey R(2013)-extension of the beta function Stud. Appl. Math. 131 105-118
[6]  
Cao J(2014)Generalizations of certain Carlitz’s trilinear and Srivastava–Agarwal type generating functions J. Math. Anal. Appl. 412 841-851
[7]  
Cao J(2014)A note on J. Differ. Equ. Appl. 20 837-851
[8]  
Cao J(1972)-integrals and certain generating functions Collectanea Math. 23 91-104
[9]  
Cao J(2003)A note on generalized Adv. Appl. Math. 31 659-668
[10]  
Carlitz L(2014)-difference equations for Appl. Math. Comput. 233 292-297