A convolution quadrature using derivatives and its application

被引:0
作者
Hao Ren
Junjie Ma
Huilan Liu
机构
[1] Guizhou University,School of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2024年 / 64卷
关键词
Convolution quadrature; Hermite collocation; Highly oscillatory integral; Numerical integration; 65D32; 65R10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to explore the convolution quadrature based on a class of two-point Hermite collocation methods. Incorporating derivatives into the numerical scheme enhances the accuracy while preserving stability, which is confirmed by the convergence analysis for the discretization of the initial value problem. Moreover, we employ the resulting quadrature to evaluate a class of highly oscillatory integrals. The frequency-explicit convergence analysis demonstrates that the proposed convolution quadrature surpasses existing convolution quadratures, achieving the highest convergence rate with respect to the oscillation among them. Numerical experiments involving convolution integrals with smooth, weakly singular, and highly oscillatory Bessel kernels illustrate the reliability and efficiency of the proposed convolution quadrature.
引用
收藏
相关论文
共 50 条
  • [1] A convolution quadrature using derivatives and its application
    Ren, Hao
    Ma, Junjie
    Liu, Huilan
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [2] Convolution quadrature revisited
    Lubich, C
    BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 503 - 514
  • [3] Convolution Quadrature Revisited
    Christian Lubich
    BIT Numerical Mathematics, 2004, 44 : 503 - 514
  • [4] APPROXIMATION METHODS FOR THE DISTRIBUTED ORDER CALCULUS USING THE CONVOLUTION QUADRATURE
    Yin, Baoli
    Liu, Yang
    Li, Hong
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1447 - 1468
  • [5] Fast and oblivious convolution quadrature
    Schaedle, Achim
    Lopez-Fernandez, Maria
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) : 421 - 438
  • [6] Convolution Quadrature for Wave Simulations
    Hassell, Matthew
    Sayas, Francisco-Javier
    NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING, 2016, 9 : 71 - 159
  • [7] Fractional Variational Integrators Based on Convolution Quadrature
    Belgacem, Khaled Hariz
    Jimenez, Fernando
    Ober-Bloebaum, Sina
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [8] Generalized convolution quadrature with variable time stepping
    Lopez-Fernandez, Maria
    Sauter, Stefan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1156 - 1175
  • [9] An error analysis of Runge–Kutta convolution quadrature
    Lehel Banjai
    Christian Lubich
    BIT Numerical Mathematics, 2011, 51 : 483 - 496
  • [10] The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)