Multi-kernel Unmixing and Super-Resolution Using the Modified Matrix Pencil Method

被引:0
作者
Stéphane Chrétien
Hemant Tyagi
机构
[1] National Physical Laboratory,
[2] The Alan Turing Institure,undefined
[3] INRIA Lille-Nord Europe,undefined
来源
Journal of Fourier Analysis and Applications | 2020年 / 26卷
关键词
Matrix pencil; Super-resolution; Unmixing kernels; Mixture models; Sampling; Approximation; Signal recovery; 15B05; 42A82; 65T99; 65F15; 94A20;
D O I
暂无
中图分类号
学科分类号
摘要
Consider L groups of point sources or spike trains, with the lth group represented by xl(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_l(t)$$\end{document}. For a function g:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:\mathbb {R}\rightarrow \mathbb {R}$$\end{document}, let gl(t)=g(t/μl)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_l(t) = g(t/\mu _l)$$\end{document} denote a point spread function with scale μl>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _l > 0$$\end{document}, and with μ1<⋯<μL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _1< \cdots < \mu _L$$\end{document}. With y(t)=∑l=1L(gl⋆xl)(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y(t) = \sum _{l=1}^{L} (g_l \star x_l)(t)$$\end{document}, our goal is to recover the source parameters given samples of y, or given the Fourier samples of y. This problem is a generalization of the usual super-resolution setup wherein L=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L = 1$$\end{document}; we call this the multi-kernel unmixing super-resolution problem. Assuming access to Fourier samples of y, we derive an algorithm for this problem for estimating the source parameters of each group, along with precise non-asymptotic guarantees. Our approach involves estimating the group parameters sequentially in the order of increasing scale parameters, i.e., from group 1 to L. In particular, the estimation process at stage 1≤l≤L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le l \le L$$\end{document} involves (i) carefully sampling the tail of the Fourier transform of y, (ii) a deflation step wherein we subtract the contribution of the groups processed thus far from the obtained Fourier samples, and (iii) applying Moitra’s modified Matrix Pencil method on a deconvolved version of the samples in (ii).
引用
收藏
相关论文
共 92 条
[1]  
Andersson F(2018)Esprit for multidimensional general grids SIAM J. Matrix Anal. Appl. 39 1470-1488
[2]  
Carlsson M(2015)Spike detection from inaccurate samplings Appl. Comput. Harmon. Anal. 38 177-195
[3]  
Azaïs JM(2003)Error analysis of signal zeros: a projected companion matrix approach Linear Algebra Appl. 369 153-167
[4]  
de Castro Y(2016)Robust recovery of stream of pulses using convex optimization J. Math. Anal. Appl. 442 511-536
[5]  
Gamboa F(1996)A graph theoretic approach to the analysis of DNA sequencing data Genome Res. 6 80-91
[6]  
Bazán FSV(2017)The alternating descent conditional gradient method for sparse inverse problems SIAM J. Optim. 27 616-639
[7]  
Bendory T(2004)Multiple neural spike train data analysis: state-of-the-art and future challenges Nat. Neurosci. 7 456-1254
[8]  
Dekel S(2013)Super-resolution from noisy data J. Fourier Anal. Appl. 19 1229-956
[9]  
Feuer A(2014)Towards a mathematical theory of super-resolution Commun. Pure Appl. Math. 67 906-609
[10]  
Berno AJ(2013)Anisotropic adaptive kernel deconvolution Ann. l’Institut Henri Poincaré, Probab. Stat. 49 569-1002