Propagation of Electromagnetic Waves in Media Undergoing Complex Motions

被引:0
作者
V. Gladyshev
T. Gladysheva
V. Zubarev
机构
[1] Bauman Moscow State Technical University,Physics Department
来源
Journal of Engineering Mathematics | 2006年 / 55卷
关键词
dispersion relation; electromagnetic wave; Fizeau effect;
D O I
暂无
中图分类号
学科分类号
摘要
Results of a theoretical and experimental investigation into new effects in moving-media optics are presented. An exact analytical solution is obtained for the trajectory of the wave vector of a monochromatic electromagnetic plane wave in a medium undergoing a complex motion. It is shown that the spatial dragging of the electromagnetic wave by the moving medium can be described correctly in the general case only if relativistic terms of order β2 are taken into account. Also, in this investigation a spatial effect of the light drag was observed at a wavelength of λ =0· 63299 μm by means of an optical disk with a refractive index n=1· 4766, a radius of R0 =0· 06 m rotating at a frequency of ω =25 Hz. A relative shift of the interference pattern, monitored by the time of the interference band motion across the aperture of a photodetector for the disk rotating in the opposite directions, amounted to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_\Sigma^{\rm exp} =0\cdot 0076\pm 0\cdot 0030$$\end{document} of the interference bandwidth. The results of theoretical calculations of the expected interference pattern shift on the basis of the total solution of the dispersion equation in the experiment are in agreement with the experimental results. Analysis of the results obtained suggests that the detected effects determine a wide class of observed phenomena, even when the velocities of moving media are non-relativistic.
引用
收藏
页码:239 / 254
页数:15
相关论文
共 27 条
[1]  
Sagnac G.(1913)L’ether lumineux demontre par l’effect du vent relative d’ether dans un interferometer en rotation uniforme C.R. Acad. Sci. 33 349-354
[2]  
Logunov A.A.(1998)Special theory of relativity and the Sagnac effect Sov. Phys. Usp. 31 861-867
[3]  
Chugreev Yu.V.(1964)Resonant frequencies of an electromagnetic cavity in an accelerated system of reference Phys. Rev. A. 134 799-494
[4]  
Heer C.V.(1967)Sagnac effect Rev. Mod. Phys. 39 475-403
[5]  
Post E.J.(1859)Sur les hypotesis relatives a l’ether lumineux, et sur une experience qui parait demonter que le mouvement des corps change la vitesse avec laquelle la lumiere se propage dans leur interieur. Ann Chim. Phys. 57 385-319
[6]  
d’Fizeau H.(1981)Sagnac effect in fiber gyroscopes Opt. Lett. 6 401-1163
[7]  
Arditty H.J.(1977)Light drag in a ring laser: An improved determination of the drag coefficient Phys. Rev. A. 16 313-1295
[8]  
Lefevre H.C.(1977)The Fizeau effect: Theory, experiment, and Zeemen’s measurements Am. J. Phys. 45 1154-2607
[9]  
Bilger H.R.(1979)Optical fiber gyroscopes: Sagnac or Fizeau effect? Appl. Opt. 18 1293-9
[10]  
Stowell W.K.(1977)Fresnel-Fizeau effect in a rotating optical fiber ring interferometer Appl. Opt. 16 2605-838