Stabilization of Infinite-Dimensional Semilinear Systems with Dissipative Drift

被引:0
|
作者
H. Bounit
H. Hammouri
机构
[1] L.A.G.E.P. Bât 308,
[2] Université Claude Bernard Lyon I,undefined
[3] UPRES-A CNRS Q 5007,undefined
[4] et ESCPE - Lyon,undefined
[5] 43,undefined
[6] Bd du 11 Novembre 1918,undefined
[7] 69622 Villeurbanne cedex,undefined
[8] France hammouri@lagep.univ-lyon1.fr ,undefined
来源
关键词
Key words. Distributed systems, Asymptotic ad-condition, Nonlinear stabilization. AMS Classification. DG/96039/AB/SM.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study feedback stabilization for distributed semilinear control systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\dot{x}(t) = Ax(t) + u(t){\cal B}(x(t))$ \end{document} . Here, A is the infinitesimal generator of a linear C0 -semigroup of contractions on a real Hilbert space H and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal B}$ \end{document} is a nonlinear operator on H into itself. A sufficient ad-condition is provided for strong feedback stabilization. The result is illustrated by means of partial differential systems.
引用
收藏
页码:225 / 242
页数:17
相关论文
共 50 条
  • [21] THE H-INFINITY-PROBLEM FOR INFINITE-DIMENSIONAL SEMILINEAR SYSTEMS
    BARBU, V
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (04) : 1017 - 1027
  • [22] Motion planning and partial stabilization of infinite-dimensional systems
    Zuyev, AL
    ROMOCO'01: PROCEEDINGS OF THE SECOND INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL, 2001, : 129 - 133
  • [23] Local exponential stabilization of nonlinear infinite-dimensional systems
    Hastir, Anthony
    Winkin, Joseph J.
    Dochain, Denis
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4038 - 4045
  • [24] SOME REMARKS ON ADAPTIVE STABILIZATION OF INFINITE-DIMENSIONAL SYSTEMS
    LOGEMANN, H
    ZWART, H
    SYSTEMS & CONTROL LETTERS, 1991, 16 (03) : 199 - 207
  • [25] An inverse optimal control problem and robustness for infinite-dimensional semilinear systems
    Ennouari, Toufik
    Abouzaid, Bouchra
    Achhab, Mohammed Elarbi
    JOURNAL OF CONTROL AND DECISION, 2025,
  • [26] Asymptotic stability of infinite-dimensional semilinear systems: Application to a nonisothermal reactor
    Aksikas, Ilyasse
    Winkin, Joseph J.
    Dochain, Denis
    SYSTEMS & CONTROL LETTERS, 2007, 56 (02) : 122 - 132
  • [27] Synchronization of Identical Boundary-Actuated Semilinear Infinite-Dimensional Systems
    Ferrante, Francesco
    Casadei, Giacomo
    Prieur, Christophe
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1322 - 1327
  • [28] Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional systems with application to chemical tubular reactor
    Orlov, Y
    Dochain, D
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (08) : 1293 - 1304
  • [29] Transfer functions of infinite-dimensional systems: positive realness and stabilization
    Guiver, C.
    Logemann, H.
    Opmeer, M. R.
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2017, 29 (04)
  • [30] On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping
    Hante, Falk M.
    Sigalotti, Mario
    Tucsnak, Marius
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5569 - 5593