Robust vertex enumeration for convex hulls in high dimensions

被引:0
作者
Pranjal Awasthi
Bahman Kalantari
Yikai Zhang
机构
[1] Rutgers University,
来源
Annals of Operations Research | 2020年 / 295卷
关键词
Convex hull membership; Approximation algorithms; Machine learning; Linear programming; Random projections;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of computing the vertices of the convex hull of a given input set S={vi∈Rm:i=1,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S= \{v_i \in \mathbb {R} ^m: i=1, \dots , n\}$$\end{document} is a classic and fundamental problem, studied in the context of computational geometry, linear and convex programming, machine learning and more. In this article we present All Vertex Triangle Algorithm (AVTA), a robust and efficient algorithm for this problem. On the one hand, without any assumptions, AVTA computes approximation to the subset S¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{S}$$\end{document} of all K vertices of the convex hull of S so that the convex hull of the approximate subset of vertices is as close to conv(S) as desired. On the other hand, assuming a known lower bound γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} on the ratio Γ∗/R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _*/R$$\end{document}, where Γ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _*$$\end{document} the minimum of the distances from each vertex to the convex hull of the remaining vertices and R the diameter of S, AVTA can recover all of S¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{S}$$\end{document}. Furthermore, assuming that instead of S the input is an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-perturbation of S, S¯ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{S}_\varepsilon $$\end{document}, where ‖vi-viε‖≤εR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert v_i - v^{\varepsilon }_i \Vert \le \varepsilon R$$\end{document}, AVTA can compute approximation to conv(S¯ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$conv(\overline{S}_\varepsilon )$$\end{document}, to any prescribed accuracy. Also, given a lower bound to the ratio Σ∗/R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma _*/R$$\end{document}, where Σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma _*$$\end{document} is the minimum of the distances from each vertex to the convex hull of the remaining point of S, AVTA can recover all of S¯ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{S}_\varepsilon $$\end{document}. We show Σ∗≥ρ∗Γ∗/R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma _* \ge \rho _* \varGamma _*/R$$\end{document}, where ρ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _*$$\end{document} is the minimum distance between distinct pair of points in S and prove the following main results: Given any t∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in (0,1)$$\end{document}, AVTA computes a subset S¯t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{S}^t$$\end{document} of S¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{S}$$\end{document} of cardinality K(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{(t)}$$\end{document} in O(nK(t)(m+t-2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n K^{(t)}(m+ t^{-2}))$$\end{document} operations so that for any p∈conv(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in conv(S)$$\end{document} its Euclidean distance to conv(S¯t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$conv(\overline{S}^t)$$\end{document} is at most tR.Given γ≤γ∗=Γ∗/R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \le \gamma _* = \varGamma _*/R$$\end{document}, AVTA computes S¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{S}$$\end{document} in O(nK(m+γ-2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(nK(m+ \gamma ^{-2}))$$\end{document} operations.If K is known, the complexity of AVTA is O(nK(m+γ∗-2)log(γ∗-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(nK(m+ \gamma _*^{-2}) \log (\gamma _*^{-1}))$$\end{document}.
引用
收藏
页码:37 / 73
页数:36
相关论文
共 26 条
[1]  
Barber CB(1996)The quickhull algorithm for convex hulls ACM Transactions on Mathematical Software (TOMS) 22 469-483
[2]  
Dobkin DP(2012)Probabilistic topic models Communications of the ACM 55 77-84
[3]  
Huhdanpaa H(2003)Latent dirichlet allocation Journal of Machine Learning Research 3 993-1022
[4]  
Blei DM(1998)A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 121-167
[5]  
Blei DM(1996)Optimal output-sensitive convex hull algorithms in two and three dimensions Discrete & Computational Geometry 16 361-368
[6]  
Ng AY(1996)Output-sensitive results on convex hulls, extreme points, and related problems Discrete & Computational Geometry 16 369-387
[7]  
Jordan MI(1993)An optimal convex hull algorithm in any fixed dimension Discrete & Computational Geometry 10 377-409
[8]  
Burges CJC(2010)Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm ACM Transactions on Algorithms (TALG) 6 63-1210
[9]  
Chan TM(2013)Topic discovery through data dependent and random projections ICML 3 1202-110
[10]  
Chan TM(1956)An algorithm for quadratic programming Naval Research Logistics (NRL) 3 95-80