Almost all weak solutions of the weighted p(.)-biharmonic problem

被引:0
作者
Ismail Aydın
机构
[1] Sinop University,Department of Mathematics
来源
The Journal of Analysis | 2024年 / 32卷
关键词
Weighted ; -biharmonic operator; Poincare inequality; Variational methods; 35J35; 46E35; 35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new compact embedding theorem, and use an equivalent norm to obtain some different solutions of the weighted p.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\left( .\right) $$\end{document}-biharmonic eigenvalue problem Δν(x)Δup(x)-2Δu=λω(x)uq(x)-2u,inΩu=Δu=0,on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{cc} \Delta \left( \nu (x)\left| \Delta u\right| ^{p(x)-2}\Delta u\right) =\lambda \omega (x)\left| u\right| ^{q(x)-2}u, &{} \text {in }\Omega \\ u=\Delta u=0, &{} \text {on }\partial \Omega . \end{array} \right. \end{aligned}$$\end{document}Using Mountain Pass Theorem we show that the problem has a nontrivial weak solution. Moreover, we obtain infinite many pairs of solutions of the problem due to the Fountain Theorem.
引用
收藏
页码:171 / 190
页数:19
相关论文
共 75 条
[1]  
Halsey TC(1992)Electrorheological fluids Science 258 761-766
[2]  
Mihăilescu M(2006)A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids Proc. R. Soc. Lond. Ser. A 462 2625-2641
[3]  
Rădulescu V(1987)Averaging of functionals of tha calculus of variations and elasticity theory Math. USSR Izv. 9 33-66
[4]  
Zhikov VV(2020)Weighted stochastic field exponent Sobolev spaces and nonlinear degenerated elliptic problem with nonstandard growth Hacettepe J. Math. Stat. 49 1383-1396
[5]  
Aydın I(2021)Three solutions to a Steklov problem involving the weighted Rocky Mountain J. Math. 51 67-76
[6]  
Unal C(2021)-Laplacian Ricerche di Matematica 53 945-956
[7]  
Aydın I(2008)Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian Complex Var. Elliptic Equ. 50 51-63
[8]  
Unal C(2014)Existence of entropy solutions for degenerate quasilinear elliptic equations Arc. Math. (Brno) Tomus 3 215-226
[9]  
Aydın I(2015)Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations Elec. J. Math. Anal. App. 52 585-594
[10]  
Unal C(2003)Existence and uniqueness of solutions for problems with weighted Nonlinear Anal. 312 464-477