2D signal estimation for sparse distributed target photon counting data

被引:1
作者
Hayman, Matthew [1 ]
Stillwell, Robert A. [1 ]
Carnes, Josh [1 ]
Kirchhoff, Grant J. [2 ]
Spuler, Scott M. [1 ]
Thayer, Jeffrey P. [2 ]
机构
[1] Natl Sci Fdn Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80307 USA
[2] Univ Colorado, Ann & HJ Smead Aerosp Engn Sci, Boulder, CO 80303 USA
基金
美国国家科学基金会;
关键词
LIDAR; RANGE;
D O I
10.1038/s41598-024-60464-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we explore the utilization of penalized likelihood estimation for the analysis of sparse photon counting data obtained from distributed target lidar systems. Specifically, we adapt the Poisson Total Variation processing technique to cater to this application. By assuming a Poisson noise model for the photon count observations, our approach yields denoised estimates of backscatter photon flux and related parameters. This facilitates the processing of raw photon counting signals with exceptionally high temporal and range resolutions (demonstrated here to 50 Hz and 75 cm resolutions), including data acquired through time-correlated single photon counting, without significant sacrifice of resolution. Through examination involving both simulated and real-world 2D atmospheric data, our method consistently demonstrates superior accuracy in signal recovery compared to the conventional histogram-based approach commonly employed in distributed target lidar applications.
引用
收藏
页数:14
相关论文
共 37 条
[1]   Effects of cirrus heterogeneity on lidar CALIOP/CALIPSO data [J].
Alkasem, A. ;
Szczap, F. ;
Cornet, C. ;
Shcherbakov, V. ;
Gour, Y. ;
Jourdan, O. ;
Labonnote, L. C. ;
Mioche, G. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 202 :38-49
[2]   Robust Bayesian Target Detection Algorithm for Depth Imaging From Sparse Single-Photon Data [J].
Altmann, Yoann ;
Ren, Ximing ;
McCarthy, Aongus ;
Buller, Gerald S. ;
McLaughlin, Steve .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (04) :456-467
[3]   Aerosol effects on clouds are concealed by natural cloud heterogeneity and satellite retrieval errors [J].
Arola, Antti ;
Lipponen, Antti ;
Kolmonen, Pekka ;
Virtanen, Timo H. ;
Bellouin, Nicolas ;
Grosvenor, Daniel P. ;
Gryspeerdt, Edward ;
Quaas, Johannes ;
Kokkola, Harri .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   High resolution photon time-tagging lidar for atmospheric point cloud generation [J].
Barton-Grimley, Rory A. ;
Stillwell, Robert A. ;
Thayer, Jeffrey P. .
OPTICS EXPRESS, 2018, 26 (20) :26030-26044
[5]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[6]  
Becker W., 2005, Advanced Time-Correlated Single Photon Counting Techniques
[7]  
Boksenberg A., 2018, Adv. Electron. Electron Phys, V33, P835, DOI [10.1016/S0065-2539(08)60798-2, DOI 10.1016/S0065-2539(08)60798-2]
[8]  
Computational and Information Systems Laboratory CISL, 2020, Tech. Rep.
[9]   Single-photon detection for long-range imaging and sensing [J].
Hadfield, Robert H. ;
Leach, Jonathan ;
Fleming, Fiona ;
Paul, Douglas J. ;
Tan, Chee Hing ;
Ng, Jo Shien ;
Henderson, Robert K. ;
Buller, Gerald S. .
OPTICA, 2023, 10 (09) :1124-1141
[10]   Single-photon detectors for optical quantum information applications [J].
Hadfield, Robert H. .
NATURE PHOTONICS, 2009, 3 (12) :696-705