Functional differential equations in Hilbert spaces driven by a fractional Brownian motion

被引:27
作者
Boufoussi B. [1 ]
Hajji S. [1 ]
Lakhel E.H. [2 ]
机构
[1] Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University
[2] Department of Mathematics, National School of Applied Sciences Safi, Cadi Ayyad University, Safi
关键词
Fractional Brownian motion; Fractional powers of closed operators; Semigroup of bounded linear operator; Stochastic functional differential equation;
D O I
10.1007/s13370-011-0028-8
中图分类号
学科分类号
摘要
In this paper, we prove a global existence and uniqueness result of the mild solution for stochastic functional differential equations in Hilbert space driven by a fractional Brownian motion with Hurst parameter H > 1/2. We also study the dependence of the solution on the initial condition. © 2011 African Mathematical Union and Springer-Verlag.
引用
收藏
页码:173 / 194
页数:21
相关论文
共 12 条
[1]  
Fernique X., Regularité des trajectoires des fonctions aléatoires gaussiennes, Ecole d'été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Mathematics, 480, pp. 1-96, (1975)
[2]  
Ferrante M., Rovira C., Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2, Bernoulli, 12, 1, pp. 85-100, (2006)
[3]  
Ferrante M., Rovira C., Convergence of delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2
[4]  
Lyons T., Differential equations driven by rough signals (I): an extension of an inequality of L, C. Young. Math. Res. Lett., 1, pp. 451-464, (1994)
[5]  
Mandelbrot B.B., van Ness J.W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 4, pp. 422-437, (1968)
[6]  
Maslowski B., Nualart D., Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202, 1, pp. 277-305, (2003)
[7]  
Neuenkirch A., Nourdin I., Tindel S., Delay equations driven by rough paths, Electron. J. Probab., 13, pp. 2031-2068, (2008)
[8]  
Nualart D., Rascanu A., Differential equations driven by fractional Brownian motion, Collect. Math., 53, pp. 55-81, (2002)
[9]  
Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, Vol. 44, (1983)
[10]  
Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives, Theory and Applications, (1993)