Strong coupling expansions in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 quiver gauge theories

被引:0
作者
M. Billò
M. Frau
A. Lerda
A. Pini
P. Vallarino
机构
[1] Università di Torino,
[2] Dipartimento di Fisica,undefined
[3] Università del Piemonte Orientale,undefined
[4] Dipartimento di Scienze e Innovazione Tecnologica,undefined
[5] I.N.F.N. — sezione di Torino,undefined
关键词
Extended Supersymmetry; Supersymmetric Gauge Theory; 1/; Expansion; AdS-CFT Correspondence;
D O I
10.1007/JHEP01(2023)119
中图分类号
学科分类号
摘要
We study the 3-point functions of gauge-invariant scalar operators in four dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal quiver theories using supersymmetric localization in the planar limit of a large number of colors. By exploiting a web of nontrivial relations, we show that the 3-point functions can be expressed in terms of the 2-point functions through exact Ward-like identities that are valid for all values of the coupling constant. In this way, using recent results about the 2-point functions, we are able to obtain the asymptotic strong-coupling expansion of the 3-point functions and of the corresponding structure constants in the planar limit. Our results extend to sub-leading orders what has been recently found at leading order, where a precise match with calculations within the AdS/CFT correspondence at the supergravity level is possible. Therefore, our findings can be interpreted also as a prediction for the sub-leading string corrections to these holographic calculations.
引用
收藏
相关论文
共 37 条
[1]  
Maldacena JM(1998) = 2 Adv. Theor. Math. Phys. 2 231-undefined
[2]  
Gubser SS(1998) = 2 Phys. Lett. B 428 105-undefined
[3]  
Klebanov IR(1998) = 4 Adv. Theor. Math. Phys. 2 253-undefined
[4]  
Polyakov AM(2012) = 4 Commun. Math. Phys. 313 71-undefined
[5]  
Witten E(2020)undefined JHEP 05 070-undefined
[6]  
Pestun V(2020)undefined JHEP 07 219-undefined
[7]  
Belitsky AV(2021)undefined JHEP 04 257-undefined
[8]  
Korchemsky GP(1998)undefined Phys. Rev. Lett. 80 4855-undefined
[9]  
Belitsky AV(1998)undefined Phys. Lett. B 439 23-undefined
[10]  
Korchemsky GP(2020)undefined JHEP 06 055-undefined