Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis

被引:0
作者
Florian Kabinger
Carina Stiller
Jana Schmitzová
Christian Dienemann
Goran Kokic
Hauke S. Hillen
Claudia Höbartner
Patrick Cramer
机构
[1] Max Planck Institute for Biophysical Chemistry,
[2] Department of Molecular Biology,undefined
[3] Universität Würzburg,undefined
[4] Lehrstuhl für Organische Chemie I,undefined
[5] University Medical Center Göttingen,undefined
[6] Department of Cellular Biochemistry,undefined
[7] Max Planck Institute for Biophysical Chemistry,undefined
[8] Research Group Structure and Function of Molecular Machines,undefined
来源
Nature Structural & Molecular Biology | 2021年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-d-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp–RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
引用
收藏
页码:740 / 746
页数:6
相关论文
共 108 条
[1]  
Dolgin E(2021)The race for antiviral drugs to beat COVID—and the next pandemic Nature 592 340-343
[2]  
Hilgenfeld R(2013)From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses Antivir. Res. 100 286-295
[3]  
Peiris M(2016)The nonstructural proteins directing coronavirus RNA synthesis and processing Adv. Virus Res. 96 59-126
[4]  
Snijder EJ(2017)Nidovirus RNA polymerases: complex enzymes handling exceptional RNA genomes Virus Res. 234 58-73
[5]  
Decroly E(2020)A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping Cells 9 1267-53
[6]  
Ziebuhr J(2021)RNA-dependent RNA polymerase: structure, mechanism and drug discovery for COVID-19 Biochem. Biophys. Res. Commun. 538 47-337
[7]  
Posthuma CC(2021)SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19 Experrt Opin. Ther. Pat. 31 325-E3909
[8]  
Te Velthuis AJW(2021)RNA-dependent RNA polymerase (RdRp) inhibitors: the current landscape and repurposing for the COVID-19 pandemic Eur. J. Med. Chem. 213 113201-782
[9]  
Snijder EJ(2014)One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities Proc. Natl Acad. Sci. USA 111 E3900-1504
[10]  
Romano M(2019)Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors Nat. Commun. 10 779-428