On the asymptotic behavior of certain solutions of the Dirichlet problem for the equation -Δpu=λ|u|q-2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _p u=\lambda |u|^{q-2}u$$\end{document}

被引:0
作者
Giovanni Anello
Giuseppe Cordaro
机构
[1] University of Messina,Department of Mathematics and Computer Science
[2] Cittadella Universitaria,undefined
[3] Kore University,undefined
关键词
Elliptic boundary value problems; Positive solutions; Nodal solutions; Minimal energy; Asymptotic behavior; Variational methods; 35J20; 35J25;
D O I
10.1007/s00605-013-0550-x
中图分类号
学科分类号
摘要
Let p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}. We study the behavior of certain positive and nodal solutions of the problem -Δpu=λ|u|q-2uinΩu=0in∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \,\, \begin{array}{lll} -\Delta _p u=\lambda |u|^{q-2}u \ \ &{}\mathrm{in} \ \ &{}{\varOmega } \\ u=0 &{}\mathrm{in} \ \ &{}\partial {\varOmega } \end{array}\right. \end{aligned}$$\end{document}on varying of the parameters λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} and q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1$$\end{document}.
引用
收藏
页码:127 / 149
页数:22
相关论文
共 17 条
  • [1] Adimurthi S(1994)An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem Arch. Rational Mech. Anal. 127 219-229
  • [2] Yadava L(2002)On the asymptotic behaviors of the positive solution of Taiwanese J. Math. 6 555-563
  • [3] Agapito JCC(2009)On the Dirichlet problem involving the equation Nonlinear Anal. 70 2060-2066
  • [4] Paredes LI(1992)On limits of solutions of elliptic problem with nearly critical exponent Comm. Part. Diff. Eq. 17 2113-2126
  • [5] Rey RM(1987)Existence et unicitè de solutions positives pour certaines quations elliptiques quasilinèaires C.R. Acad. Sci., Paris., Sèr. I, Math. 305 521-524
  • [6] Sy PW(2008)On the asymptotics of solutions of the Lane-Emden problem for the Arch. Math. (Basel) 91 354-365
  • [7] Anello G(1997)-Laplacian Nonlinear Anal. 29 533-537
  • [8] Azorero JG(1995)A note on the asymptotic behavior of positive solutions for some elliptic equation Funkcial. Ekvac. 38 1-9
  • [9] Alonso IP(1988)The first eigenvalues of some abstract elliptic operators Nonlinear Anal. 12 1203-1219
  • [10] Dìaz JI(undefined)Boundary regularity for solutions of degenerate elliptic equations undefined undefined undefined-undefined