Aubin’s Lemma for the Yamabe constants of infinite coverings and a positive mass theorem

被引:0
作者
Kazuo Akutagawa
机构
[1] Tohoku University,Division of Mathematics, Graduate School of Information Sciences
来源
Mathematische Annalen | 2012年 / 352卷
关键词
Manifold; Scalar Curvature; Constant Scalar Curvature; Index Subgroup; Deck Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
Aubin’s Lemma says that, if the Yamabe constant of a closed conformal manifold (M, C) is positive, then it is strictly less than the Yamabe constant of any of its non-trivial finite conformal coverings. We generalize this lemma to the one for the Yamabe constant of any (M∞, C∞) of its infinite conformal coverings, provided that π1(M) has a descending chain of finite index subgroups tending to π1(M∞). Moreover, if the covering M∞ is normal, the limit of the Yamabe constants of the finite conformal coverings (associated to the descending chain) is equal to that of (M∞, C∞). For the proof of this, we also establish a version of positive mass theorem for a specific class of asymptotically flat manifolds with singularities.
引用
收藏
页码:829 / 864
页数:35
相关论文
共 41 条
[1]  
Akutagawa K.(1994)Yamabe metrics of positive scalar curvature and conformally flat manifolds Differ. Geom. Appl. 4 239-258
[2]  
Akutagawa K.(2003)Yamabe metrics on cylindrical manifolds Geom. Funct. Anal. 13 259-333
[3]  
Botvinnik B.(2003)The Weyl functional near the Yamabe invariant J. Geom. Anal. 13 1-20
[4]  
Akutagawa K.(2007)On Yamabe constants of Riemannian products Commun. Anal. Geom. 15 947-969
[5]  
Botvinnik B.(2007)3-manifolds with Yamabe invariant greater than that of J. Differ. Geom. 75 359-386
[6]  
Kobayashi O.(2005)Orbifold compactness for spaces of Riemannian metrics and applications Math. Ann. 331 739-778
[7]  
Seshadri H.(1976)Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire J. Math. Pures Appl. 55 269-296
[8]  
Akutagawa K.(1986)The mass of an asymptotically flat manifold Commun. Pure Appl. Math. 39 661-693
[9]  
Florit L.A.(2004)Classification of prime 3-manifolds with Yamabe invariant greater than Ann. Math. 159 407-424
[10]  
Petean J.(1991)The existence of generalized isothermal coordinates for higher dimensional Riemannian manifolds Trans. Am. Math. Soc. 324 901-920