Mortar multiscale finite element methods for Stokes–Darcy flows

被引:1
|
作者
Vivette Girault
Danail Vassilev
Ivan Yotov
机构
[1] UPMC-Paris 6 and CNRS,Mathematics Research Institute, College of Engineering, Mathematics and Physical Sciences
[2] UMR 7598,Department of Mathematics
[3] Department of Mathematics,undefined
[4] TAMU,undefined
[5] University of Exeter,undefined
[6] University of Pittsburgh,undefined
来源
Numerische Mathematik | 2014年 / 127卷
关键词
65N12; 65N15; 65N30; 65N55; 76D07; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate mortar multiscale numerical methods for coupled Stokes and Darcy flows with the Beavers–Joseph–Saffman interface condition. The domain is decomposed into a series of subdomains (coarse grid) of either Stokes or Darcy type. The subdomains are discretized by appropriate Stokes or Darcy finite elements. The solution is resolved locally (in each coarse element) on a fine scale, allowing for non-matching grids across subdomain interfaces. Coarse scale mortar finite elements are introduced on the interfaces to approximate the normal stress and impose weakly continuity of the normal velocity. Stability and a priori error estimates in terms of the fine subdomain scale h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} and the coarse mortar scale H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} are established for fairly general grid configurations, assuming that the mortar space satisfies a certain inf-sup condition. Several examples of such spaces in two and three dimensions are given. Numerical experiments are presented in confirmation of the theory.
引用
收藏
页码:93 / 165
页数:72
相关论文
共 50 条
  • [1] Mortar multiscale finite element methods for Stokes-Darcy flows
    Girault, Vivette
    Vassilev, Danail
    Yotov, Ivan
    NUMERISCHE MATHEMATIK, 2014, 127 (01) : 93 - 165
  • [2] Coupling finite element and multiscale finite element methods for the non-stationary Stokes-Darcy model
    Hong, Yachen
    Zhang, Wenhan
    Zhao, Lina
    Zheng, Haibiao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 530
  • [3] Mortar Element Method for the Time Dependent Coupling of Stokes and Darcy Flows
    Chen, Yanping
    Zhao, Xin
    Huang, Yunqing
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 1310 - 1329
  • [4] Mortar Element Method for the Coupling of Navier-Stokes and Darcy Flows
    Zhao, Xin
    Chen, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (03) : 710 - 734
  • [5] Mortar Element Method for the Time Dependent Coupling of Stokes and Darcy Flows
    Yanping Chen
    Xin Zhao
    Yunqing Huang
    Journal of Scientific Computing, 2019, 80 : 1310 - 1329
  • [6] Mortar finite element discretization of a model coupling Darcy and Stokes equations
    Bernardi, Christine
    Rebollo, Tomas Chacon
    Hecht, Frederic
    Mghazli, Zoubida
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03): : 375 - 410
  • [7] Finite Element Methods for Coupled Stokes and Darcy Problems
    梁涛
    冯民富
    祁瑞生
    Journal of Southwest Jiaotong University(English Edition), 2009, 17 (03) : 265 - 270
  • [8] pA multiscale flux basis for mortar mixed discretizations of Stokes-Darcy flows
    Ganis, Benjamin
    Vassilev, Danail
    Wang, ChangQing
    Yotov, Ivan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 259 - 278
  • [9] A unified stabilized mixed finite element method for coupling Stokes and Darcy flows
    Rui, Hongxing
    Zhang, Ran
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (33-36) : 2692 - 2699
  • [10] A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport
    Rui, Hongxing
    Zhang, Jingyuan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 315 : 169 - 189