Standing Pulse Solutions in Reaction-Diffusion Systems with Skew-Gradient Structure

被引:28
作者
Yanagida E. [1 ]
机构
[1] Mathematical Institute, Tohoku University
基金
日本学术振兴会;
关键词
Evans function; Reaction-diffusion systems; Skew-gradient structure; Stability; Standing pulse solutions;
D O I
10.1023/A:1012915411490
中图分类号
学科分类号
摘要
The purpose of this paper is to introduce a reaction-diffusion system with "skew-gradient" structure and discuss the stability of standing pulse solutions. In short, the skew-gradient system is a reaction-diffusion system which resembles a gradient system but has nonlinearities with different sign. We assume the existence of a standing pulse solution and define its orientation in some geometrical manner. Then we show that the stationary solution becomes unstable if time constants satisfy some inequality. The Evans function plays a crucial role for the stability analysis. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:189 / 205
页数:16
相关论文
共 16 条
[1]  
Alexander J., Gardner R., Jones C.K.R.T., A topological invariant arising in the stability of travelling waves, J. Reine Angew. Math., 410, pp. 167-212, (1990)
[2]  
Alexander J., Jones C.K.R.T., Existence and stability of asymptotically oscillatory triple pulses, Z. Angew. Math. Phys., 44, pp. 189-200, (1993)
[3]  
Alexander J., Jones C.K.R.T., Existence and stability of asymptotically oscillatory double pulses, J. Reine Angew. Math., 446, pp. 49-79, (1994)
[4]  
Bose A., Jones C.K.R.T., Stability of the in-phase travelling wave solution in a pair of coupled nerve fibres, Indiana Univ. Math. J., 44, pp. 189-220, (1995)
[5]  
Dockery J.D., Existence of standing pulse solutions for an excitable activator-inhibitor system, J. Dyn. Diff. Eqs., 4, pp. 231-257, (1992)
[6]  
Evans J.W., Nerve axon equations: III. Stability of the nerve impulse, Indiana Univ. Math. J., 22, pp. 577-593, (1972)
[7]  
Gardner R., Zumbrun K., The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51, pp. 797-855, (1998)
[8]  
Jones C.K.R.T., Stability of the travelling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc., 286, pp. 431-4469, (1984)
[9]  
Kapitula T., Stability criterion for bright solitary waves of the perturbed cubicquintic Schrodinger equation, Physica D, 116, pp. 95-120, (1998)
[10]  
Kapitula T., The Evans function and generalized Melnikov integrals, SIAM J. Math. Anal., 30, pp. 273-297, (1999)