Partial Molar Volumes and Viscosity B-Coefficients of Nicotinamide in Aqueous Resorcinol Solutions at T = (298.15, 308.15, and 318.15) K

被引:0
作者
Mahendra Nath Roy
Ashis Banerjee
Pran Kumar Roy
机构
[1] North Bengal University,Department of Chemistry
来源
International Journal of Thermophysics | 2009年 / 30卷
关键词
Density; Nicotinamide; Partial molar volume; Resorcinol; Solute–solvent and solute–solute interactions; Viscosity; Viscosity ; -coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
Partial molar volumes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${( {\phi _{\rm v}^{\rm o}} )}$$\end{document} and viscosity B-coefficients for nicotinamide in (0.00, 0.05, 0.10, 0.15, and 0.20) mol·dm−3 aqueous resorcinol solutions have been determined from solution density and viscosity measurements at (298.15, 308.15, and 318.15) K as a function of the concentration of nicotinamide (NA). Here the relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi _{v}^{\rm o} =a_0 +a_{1} T+a_{2} T^{2}}$$\end{document}, has been used to describe the temperature dependence of the partial molar volume \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi _v^{\rm o} }$$\end{document}. These results and the results obtained in pure water were used to calculate the standard volumes of transfer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta \phi _{v}^{\rm o} }$$\end{document} and viscosity B-coefficients of transfer of nicotinamide from water to aqueous resorcinol solutions to study various interactions in the ternary solutions. The partial molar volume \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${( {\phi _{v}^{\rm o}})}$$\end{document} and experimental slopes obtained from the Masson equation have been interpreted in terms of solute–solvent and solute–solute interactions, respectively. The viscosity data have been analyzed using the Jones–Dole equation, and the derived parameters B and A have also been interpreted in terms of solute–solvent and solute–solute interactions, respectively, in the ternary solutions.The structure making or breaking ability of nicotinamide has been discussed in terms of the sign of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${( {\delta ^{2}\phi _v^o /\delta T^{2}})_P}$$\end{document}. The activation parameters of viscous flow for the ternary solutions studied were also calculated and explained by the application of transition state theory.
引用
收藏
页码:515 / 528
页数:13
相关论文
共 64 条
[1]  
Cakir S.(2003)undefined J. Coord. Chem. 56 511-undefined
[2]  
Bulut I.(2008)undefined J. Chem. Thermodyn. 40 394-undefined
[3]  
Bicer E.(1959)undefined J. Biol. Chem. 234 889-undefined
[4]  
Cakir O.(2006)undefined J. Am. Chem. Soc. 128 2621-undefined
[5]  
Roy M.N.(2003)undefined J. Solution Chem. 32 703-undefined
[6]  
Sinha B.(1954)undefined Acta Crystallogr. 7 283-undefined
[7]  
Sarkar B.K.(1993)undefined Aust. J. Chem. 46 377-undefined
[8]  
Windmuller H.G.(1974)undefined J. Chem. Soc., Faraday Trans. 1 1862-undefined
[9]  
Ackerman C.J.(1975)undefined Aust. J. Chem. 28 955-undefined
[10]  
Bakerman H.(2005)undefined Int. J. Thermophys. 26 1549-undefined