A parametric study for the first-order signed integer-valued autoregressive process

被引:11
作者
Christophe Chesneau
Maher Kachour
机构
[1] Laboratoire de Mathematiques Nicolas Oresme, Université de Caen Basse-Normandie, Campus II
[2] École Supérienre de Commerce IDRAC, Lyon
关键词
INAR models; Integer-valued time series; Rademacher (p)-N class; SINAR models; Skellam distribution;
D O I
10.1080/15598608.2012.719816
中图分类号
学科分类号
摘要
In recent years, many attempts have been made to find accurate models for integer- valued times series. The SINAR (for Signed INteger-valued AutoRegressive) process is one of the most interesting. Indeed, the SINAR model allows negative values both for the series and its autocorrelation function. In this paper, we focus on the simplest SINAR(1) model under some parametric assumptions. Explicitly, we give an implicit form of the stationary distribution for a known innovation. Simulation experiments and analysis of real data sets are carried out to attest to the model's performance. Copyright © Grace Scientific Publishing, LLC.
引用
收藏
页码:760 / 782
页数:22
相关论文
共 32 条
[1]  
Alzaid A.A., Al-Osh M.A., First-order integer-valued autoregressive (INAR(1)) process, J. Time Ser. Anal., 8, 3, pp. 261-275, (1987)
[2]  
Alzaid A.A., Al-Osh M.A., An integer-valued pth-order autoregressive structure (INAR(p)) process, J. Appl. Probab., 27, 2, pp. 314-324, (1990)
[3]  
Alzaid A.A., Omair M.A., On the Poisson difference distribution inference and applications, Bull. Malaysian Math. Sci. Society, 8, 33, pp. 17-45, (2010)
[4]  
Bakouch H.S., Ristic M.M., Zero truncated poisson integer-valued AR(1) model, Metrika, 72, 2, pp. 265-280, (2010)
[5]  
Dacunha D., Duflo M., Probabilités et Statistiques. Tome 2 : Problèmes À Temps Mobile, (1983)
[6]  
Du J.-G., Li Y., The integer-valued autoregressive (INAR(p)) model, J. Time Ser. Anal., 12, pp. 129-142, (1991)
[7]  
Freeland R.K., True integer value time series, Adv. Stat. Analy., 94, pp. 217-229, (2010)
[8]  
Gauthier G., Latour A., Convergence forte des estimateurs des paramètres d'un processus GENAR(p), Ann. Sci. Math. Quebec, 18, 1, pp. 49-71, (1994)
[9]  
Kozubowski T.J., Inusah S., A skew Laplace distribution on integers, Ann. Inst. Stat. Math., 58, 3, pp. 555-571, (2006)
[10]  
Jung R.C., Tremayne A.R., Binomial thinning models for integer time series, Stat.Model., 6, 2, pp. 81-96, (2006)