A filter-line-search method for unconstrained optimization

被引:4
作者
Wang Z. [1 ]
Zhu D. [1 ]
机构
[1] College of Business, Shanghai Normal University
基金
美国国家科学基金会;
关键词
Convergence; Filter method; Line search method; Unconstrained optimization;
D O I
10.1007/s12190-009-0324-8
中图分类号
学科分类号
摘要
A new filter-line-search algorithm for unconstrained nonlinear optimization problems is proposed. Based on the filter technique introduced by Fletcher and Leyffer (Math. Program. 91:239-269, 2002) it extends an existing technique of Wächter and Biegler (SIAM J. Comput. 16:1-31, 2005) for nonlinear equality constrained problem to the fully general unconstrained optimization problem. The proposed method, which differs from their approach, does not depend on any external restoration procedure. Global and local quadratic convergence is established under some reasonable conditions. The results of numerical experiments indicate that it is very competitive with the classical line search algorithm. © 2009 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:329 / 342
页数:13
相关论文
共 22 条
[1]  
Nocedal J., Wright S., Numerical Optimization, (1999)
[2]  
Sun W., Yuan Y., Optimization Theory and Methods: Nonlinear Programming, (2006)
[3]  
Fletcher R., Leyffer S., Nonlinear programming without a penalty function, Mathematical Programming, Series B, 91, 2, pp. 239-269, (2002)
[4]  
Chin C.M., Fletcher R., On the global convergence of an SLP-filter algorithm that takes EQP steps, Mathematical Programming, Series B, 96, 1, pp. 161-177, (2003)
[5]  
Fletcher R., Gould N.I.M., Leyffer S., Toint Ph.L., Wachter A., Global convergence of a trust-region SQP-filter for general nonlinear programming, SIAM J. Optim., 13, pp. 635-659, (2002)
[6]  
Fletcher R., Leyffer S., Toint Ph.L., On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13, pp. 44-59, (2002)
[7]  
Gonzaga C.C., Karas E., Vanti M., A globally convergent filter method for nonlinear programming, SIAM J. Optim., 13, pp. 646-669, (2003)
[8]  
Li C., Sun W., On filter-successive linearization methods for nonlinear semidefinite programming, Sci. China Ser. A: Math., 52, (2009)
[9]  
Basin M., Sanchez E., Martinez-Zuniga R., Optimal linear filtering for systems with multiple state and observation delays, Int. J. Innov. Comput. Inf. Control, 3, 5, pp. 1309-1320, (2007)
[10]  
Basin M., Perez J., Calderon-Alvarez D., Optimal filtering for linear systems over polynomial observations, Int. J. Innov. Comput. Inf. Control, 4, 2, pp. 313-320, (2008)