Gravitational Field Equations on Fefferman Space–Times

被引:0
作者
Elisabetta Barletta
Sorin Dragomir
Howard Jacobowitz
机构
[1] Università degli Studi della Basilicata,Dipartmento di Matematica, Informatica ed Economia
[2] Rutgers University at Camden,Department of Mathematical Sciences
来源
Complex Analysis and Operator Theory | 2017年 / 11卷
关键词
Fefferman’s metric; Graham’s connection; Tanaka–Webster connection; Einstein’s field equations; Perturbation matrix; Sublaplacian;
D O I
暂无
中图分类号
学科分类号
摘要
The total space M≈H1×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak M} \approx {\mathbb H}_1 \times S^1$$\end{document} of the canonical circle bundle over the 3-dimensional Heisenberg group H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb H}_1$$\end{document} is a space–time with the Lorentzian metric Fθ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\theta _0}$$\end{document} (Fefferman’s metric) associated to the canonical Tanaka–Webster flat contact form θ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _0$$\end{document} on H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb H}_1$$\end{document}. The matter and energy content of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak M$$\end{document} is described by the energy-momentum tensor Tμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mu \nu }$$\end{document} (the trace-less Ricci tensor of Fθ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\theta _0}$$\end{document}) as an effect of the non flat nature of Feferman’s metric Fθ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\theta _0}$$\end{document}. We study the gravitational field equations Rμν-(1/2)Rgμν=Tμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mu \nu } - (1/2) \, R \, g_{\mu \nu } = {T}_{\mu \nu }$$\end{document} on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak M}$$\end{document}. We consider the first order perturbation g=Fθ0+ϵh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = F_{\theta _0} + \epsilon \, h$$\end{document}, ϵ<<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon<< 1$$\end{document}, and linearize the field equations about Fθ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\theta _0}$$\end{document}. We determine a Lorentzian metric g on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak M}$$\end{document} which solves the linearized field equations corresponding to a diagonal perturbation h.
引用
收藏
页码:1685 / 1713
页数:28
相关论文
共 33 条
  • [1] Aribi A(2015)A lower bound on the spectrum of the sublaplacian J. Geom. Anal. 25 1492-1519
  • [2] Dragomir S(2003)Hörmander systems and harmonic morphisms Ann. Sc. Norm. Super. Pisa 2 379-394
  • [3] El Soufi A(2012)-Completion of pseudo-Hermitian manifolds Class. Quantum Gravity 29 095007-105
  • [4] Barletta E(2016)Linearized pseudo-Einstein equations on the Heisenberg group J. Geom. Phys. 112 95-454
  • [5] Barletta E(2006)Jacobi fields of the Tanaka–Webster connection on Sasakian manifolds Kodai Math. J. 29 406-304
  • [6] Dragomir S(2014)Wave maps from Gödel’s universe Class. Quantum Gravity 31 195001-263
  • [7] Jacobowitz H(1969)Principe du maximum, inégalité de Harnack, et unicité du probl Ann. Inst. Fourier Grenoble 19 277-39
  • [8] Soret M(2013)me de Cauchy pour les opérateurs elliptiques dégénéré Ricerche di Matematica 62 229-65
  • [9] Barletta E(2014)CR immersions and Lorentzian geometry. Part I: Pseudohermitian rigidity of CR immersions Ricerche di Matematica 63 15-416
  • [10] Dragomir S(1974)CR immersions and Lorentzian geometry. Part II: a Takahashi type theorem Invent. Math. 26 1-376