Coherence and strictification for self-similarity

被引:0
作者
Peter Hines
机构
[1] University of York,Department of Computer Science
来源
Journal of Homotopy and Related Structures | 2016年 / 11卷
关键词
Category theory; Coherence; Self-similarity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies questions of coherence and strictification related to self-similarity—the identity S≅S⊗S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\cong S\otimes S$$\end{document} in a semi-monoidal category. Based on Saavedra’s theory of units, we first demonstrate that strict self-similarity cannot simultaneously occur with strict associativity—i.e. no monoid may have a strictly associative (semi-) monoidal tensor, although many monoids have a semi-monoidal tensor associative up to isomorphism. We then give a simple coherence result for the arrows exhibiting self-similarity and use this to describe a ‘strictification procedure’ that gives a semi-monoidal equivalence of categories relating strict and non-strict self-similarity, and hence monoid analogues of many categorical properties. Using this, we characterise a class of diagrams (built from the canonical isomorphisms for the relevant tensors, together with the isomorphisms exhibiting the self-similarity) that are guaranteed to commute, and give a simple intuitive interpretation of this characterisation.
引用
收藏
页码:847 / 867
页数:20
相关论文
共 27 条
  • [1] Abramsky S(2012)H*-algebras and Nonunital Frobenius Algebras: first steps in infinite-dimensional categorical quantum mechanics. Clifford Lect. AMS Proc. Symp. Appl. Math. 71 1-24
  • [2] Heunen C(1992)Algebraically Compact Functors J. Pure Appl. Algebra 82 211-231
  • [3] Barr M(2005)Coherence of associativity in categories with multiplication J. Pure Appl. Algebra 198 57-65
  • [4] Brin M(1984)An infinite-dimensional torsion-free Intent. Math. 77 367-381
  • [5] Brown K(1996) group L’Enseignement Mathématique. Revue Internationale 42 215-256
  • [6] Geoghegan R(2010)Parry Introductory notes on Richard Thompson’s groups Semigroup Forum 8 325-340
  • [7] Cannon JW(1999)An abstract characterization of Thompson’s group F Theory Appl. Categories 6 33-46
  • [8] Floyd W(2013)The categorical theory of self-similarity Math. Struct. Comput. Sci. 23 55-94
  • [9] Fiore M(1998)A categorical analogue of the monoid semi-ring construction Semigroup Forum 56 146-149
  • [10] Leinster T(2013)An application of polycyclic monoids to rings Doc. Math. 18 71-110