Sharply Dominating MV-Effect Algebras

被引:0
作者
Martin Kalina
Vladimír Olejček
Jan Paseka
Zdenka Riečanová
机构
[1] Slovak University of Technology,Department of Mathematics, Faculty of Civil Engineering
[2] Slovak University of Technology,Department of Mathematics, Faculty of Electrical Engineering and Information Technology
[3] Masaryk University,Department of Mathematics and Statistics, Faculty of Science
来源
International Journal of Theoretical Physics | 2011年 / 50卷
关键词
Lattice effect algebra; -effect algebra; Sharp element; Sharply dominating effect algebra; Atom; Atomic;
D O I
暂无
中图分类号
学科分类号
摘要
Some open questions on Archimedean atomic MV-effect algebras are answered. Namely we prove that there are Archimedean atomic MV-effect algebras which are not sharply dominating. Equivalently, they don’t have a basic decomposition of elements. Moreover, if their set of sharp elements (their center) is a complete lattice then they need not be complete lattices. The existence of infinite orthogonal sums of their elements is discussed.
引用
收藏
页码:1152 / 1159
页数:7
相关论文
共 20 条
[1]  
Chovanec F.(2000)Difference posets in the quantum structures background Int. J. Theor. Phys. 39 571-583
[2]  
Kôpka F.(1995)The center of an effect algebra Order 12 91-106
[3]  
Greechie R.J.(1998)Sharply dominating effect algebras Tatra Mt. Math. Publ. 15 23-30
[4]  
Foulis D.J.(1998)S-dominating effect algebras Int. J. Theor. Phys. 37 915-923
[5]  
Pulmannová S.(1999)On sharp elements in lattice ordered effect algebras BUSEFAL 80 24-29
[6]  
Gudder S.P.(1995)Compatibility in D-posets Int. J. Theor. Phys. 34 1525-1531
[7]  
Gudder S.P.(2007)Atomic lattice effect algebras and their sub-lattice effect algebras J. Electr. Eng. 58 3-6
[8]  
Jenča G.(1999)Compatibility and central elements in effect algebras Tatra Mt. Math. Publ. 16 151-158
[9]  
Riečanová Z.(1999)Subalgebras, intervals and central elements of generalized effect algebras Int. J. Theor. Phys. 38 3209-3220
[10]  
Kôpka F.(2000)Archimedean and block-finite lattice effect algebras Demonstr. Math. 33 443-452