Existence of common fixed point in Kannan F-contractive mappings in quasi-partial b-metric space with an application

被引:4
作者
Gautam, Pragati [1 ]
Kumar, Santosh [2 ]
Verma, Swapnil [1 ]
Gupta, Gauri [1 ]
机构
[1] Univ Delhi, Kamala Nehru Coll, Dept Math, August Kranti Marg, New Delhi 110049, India
[2] Univ Dar Es Salaam, Coll Nat & Appl Sci, Dept Math, Dar Es Salaam 35062, Tanzania
来源
FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING | 2022年 / 2022卷 / 01期
关键词
F-contraction; Kannan contraction; F-expanding type mapping; Fixed point; Quasi-partial b-metric space; INTERPOLATIVE CHATTERJEA; THEOREMS;
D O I
10.1186/s13663-022-00734-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this study is to demonstrate results on fixed point theory in quasi-partial b-metric space recognizing a new type of mapping, which is a blend of F-contraction and Kannan contraction, and to establish the fixed point results in F-expanding type mappings. Additionally, the obtained results are the application of the contractive mappings to functional equations. Furthermore, Mathematica software is used to demonstrate the 3D shapes of the examples discussed here.
引用
收藏
页数:19
相关论文
共 36 条
[1]   New fixed point theorems for generalized F-contractions in complete metric spaces [J].
Ahmad, Jamshaid ;
Al-Rawashdeh, Ahmed ;
Azam, Akbar .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[2]   Multivalued F-Contractions and Related Fixed Point Theorems with an Application [J].
Ali, Muhammad Usman ;
Kamran, Tayyab .
FILOMAT, 2016, 30 (14) :3779-3793
[3]  
Bakhtin I.A., 1989, Functional analysis, V30, P26, DOI DOI 10.1039/AP9892600037
[4]  
Banach S., 1922, Fundamenta mathematicae, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[5]   SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES [J].
BROWDER, FE ;
PETRYSHYN, WV .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) :571-+
[6]   Solvability of integrodifferential problems via fixed point theory in b-metric spaces [J].
Cosentino, Monica ;
Jleli, Mohamed ;
Samet, Bessem ;
Vetro, Calogero .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[7]  
Czerwik S., 1993, Acta Math. Univ. Ostrav, V1, P5
[8]  
Debnath P., 2021, Metric Fixed Point Theory, DOI 10.1007/978- 981-16-4896-0
[9]  
Garai H, 2017, Arxiv, DOI arXiv:1707.06383
[10]  
Gautam P., Filomat