LCP of constacyclic codes over finite chain rings

被引:0
作者
Ridhima Thakral
Sucheta Dutt
Ranjeet Sehmi
机构
[1] Punjab Engineering College (Deemed to be University),Department of Applied Sciences
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Finite chain rings; LCP of codes; Constacyclic codes; 94B05; 94B15; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a finite commutative chain ring with unity and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a unit in R. In this paper, all non-trivial linear complementary pair (LCP) of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes of arbitrary length over R have been completely determined. An expression for the total number of non-trivial LCP of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes of length n over R has also been derived in terms of the maximum number of factors of xn-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{n}-\lambda $$\end{document} into monic, pairwise coprime polynomials of degree ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 1$$\end{document} over R. Further, using the algebraic structure of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes over finite chain rings of nilpotency index 2 as an alternative approach, the complete characterization of non-trivial LCP of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes is obtained for such rings. As an illustration of our results, a few examples of non-trivial LCP of constacyclic codes over the rings Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{8}$$\end{document}, Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{4}$$\end{document} and the Galois ring GR(4, 3) have been given.
引用
收藏
页码:1989 / 2001
页数:12
相关论文
共 50 条
[31]   Contraction of cyclic codes over finite chain rings [J].
Tabue, Alexandre Fotue ;
Mouaha, Christophe .
DISCRETE MATHEMATICS, 2018, 341 (06) :1722-1731
[32]   On the lattice of cyclic codes over finite chain rings [J].
Fotue-Tabue, Alexandre ;
Mouaha, Christophe .
ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (02) :252-268
[33]   On Isodual Cyclic Codes over Finite Chain Rings [J].
Batoul, Aicha ;
Guenda, Kenza ;
Gulliver, T. Aaron ;
Aydin, Nuh .
CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 :176-194
[34]   A class of linear codes of length 2 over finite chain rings [J].
Cao, Yonglin ;
Cao, Yuan ;
Dinh, Hai Q. ;
Fu, Fang-Wei ;
Gao, Jian ;
Sriboonchitta, Songsak .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (06)
[35]   Linear complementary pair of group codes over finite chain rings [J].
Guneri, Cem ;
Martinez-Moro, Edgar ;
Sayici, Selcen .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (11) :2397-2405
[36]   Linear complementary pair of group codes over finite chain rings [J].
Cem Güneri ;
Edgar Martínez-Moro ;
Selcen Sayıcı .
Designs, Codes and Cryptography, 2020, 88 :2397-2405
[37]   CONVOLUTIONAL CODES OVER FINITE CHAIN RINGS, MDP CODES AND THEIR CHARACTERIZATION [J].
Alfarano, Gianira N. ;
Gruica, Anina ;
Lieb, Julia ;
Rosenthal, Joachim .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) :1-22
[38]   A class of constacyclic codes over a finite field [J].
Bakshi, Gurmeet K. ;
Raka, Madhu .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (02) :362-377
[39]   Some Repeated-Root Constacyclic Codes Over Galois Rings [J].
Liu, Hongwei ;
Maouche, Youcef .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) :6247-6255
[40]   Quantum Codes from Constacyclic Codes over Polynomial Residue Rings [J].
Ding, Jian ;
Li, Hongju ;
Liang, Jing ;
Tang, Yongsheng .
CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (06) :1131-1138