LCP of constacyclic codes over finite chain rings

被引:0
作者
Ridhima Thakral
Sucheta Dutt
Ranjeet Sehmi
机构
[1] Punjab Engineering College (Deemed to be University),Department of Applied Sciences
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Finite chain rings; LCP of codes; Constacyclic codes; 94B05; 94B15; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a finite commutative chain ring with unity and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a unit in R. In this paper, all non-trivial linear complementary pair (LCP) of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes of arbitrary length over R have been completely determined. An expression for the total number of non-trivial LCP of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes of length n over R has also been derived in terms of the maximum number of factors of xn-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{n}-\lambda $$\end{document} into monic, pairwise coprime polynomials of degree ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 1$$\end{document} over R. Further, using the algebraic structure of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes over finite chain rings of nilpotency index 2 as an alternative approach, the complete characterization of non-trivial LCP of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes is obtained for such rings. As an illustration of our results, a few examples of non-trivial LCP of constacyclic codes over the rings Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{8}$$\end{document}, Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{4}$$\end{document} and the Galois ring GR(4, 3) have been given.
引用
收藏
页码:1989 / 2001
页数:12
相关论文
共 50 条
[21]   Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index 3 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. ;
Tapia-Recillas, H. .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :1-21
[22]   The dual of a constacyclic code, self dual, reversible constacyclic codes and constacyclic codes with complementary duals over finite local Frobenius non-chain rings with nilpotency index 3 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. ;
Sarmiento-Rosales, E. ;
Tapia-Recillas, H. ;
Villarreal, R. H. .
DISCRETE MATHEMATICS, 2019, 342 (08) :2283-2296
[23]   LCD codes over finite chain rings [J].
Liu, Xiusheng ;
Liu, Hualu .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 :1-19
[24]   ON LCD CODES OVER FINITE CHAIN RINGS [J].
Durgun, Yilmaz .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) :37-50
[25]   On the Density of Codes over Finite Chain Rings [J].
Horlemann, Anna-Lena ;
Weger, Violetta ;
Willenborg, Nadja .
2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, :1-6
[26]   SKEW CONSTACYCLIC CODES OVER FINITE COMMUTATIVE SEMI-SIMPLE RINGS [J].
Dinh, Hai Q. ;
Bac Trong Nguyen ;
Sriboonchitta, Songsak .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) :419-437
[27]   Equivalence of constacyclic codes over finite non-chain ring and quantum codes [J].
Liu, Jie ;
Zheng, Xiying .
AIMS MATHEMATICS, 2025, 10 (07) :15193-15205
[28]   New EAQEC codes from LCP of codes over finite non-chain ringsNew EAQEC codes from LCP of codes over finite non-chain ringsP. Hu. X. Liu [J].
Peng Hu ;
Xiusheng Liu .
Quantum Information Processing, 24 (3)
[29]   Constacyclic codes over finite local Frobenius non-chain rings of length 5 and nilpotency index 4 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (02) :67-91
[30]   γ-Dual Codes over Finite Commutative Chain Rings [J].
Dinh, Hai Q. ;
Thi, Hiep L. ;
Tansuchat, Roengchai .
AXIOMS, 2024, 13 (10)