LCP of constacyclic codes over finite chain rings

被引:0
|
作者
Ridhima Thakral
Sucheta Dutt
Ranjeet Sehmi
机构
[1] Punjab Engineering College (Deemed to be University),Department of Applied Sciences
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Finite chain rings; LCP of codes; Constacyclic codes; 94B05; 94B15; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a finite commutative chain ring with unity and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a unit in R. In this paper, all non-trivial linear complementary pair (LCP) of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes of arbitrary length over R have been completely determined. An expression for the total number of non-trivial LCP of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes of length n over R has also been derived in terms of the maximum number of factors of xn-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{n}-\lambda $$\end{document} into monic, pairwise coprime polynomials of degree ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 1$$\end{document} over R. Further, using the algebraic structure of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes over finite chain rings of nilpotency index 2 as an alternative approach, the complete characterization of non-trivial LCP of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes is obtained for such rings. As an illustration of our results, a few examples of non-trivial LCP of constacyclic codes over the rings Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{8}$$\end{document}, Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{4}$$\end{document} and the Galois ring GR(4, 3) have been given.
引用
收藏
页码:1989 / 2001
页数:12
相关论文
共 50 条
  • [1] LCP of constacyclic codes over finite chain rings
    Thakral, Ridhima
    Dutt, Sucheta
    Sehmi, Ranjeet
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1989 - 2001
  • [2] On constacyclic codes over finite chain rings
    Cao, Yonglin
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 : 124 - 135
  • [3] Constacyclic and cyclic codes over finite chain rings
    National Key Laboratory, ISN, Xidian University, Xi'an, 710071, China
    J. China Univ. Post Telecom., 2009, 3 (122-125):
  • [5] A class of constacyclic codes over finite chain rings
    Zhang, Guanghui
    ARS COMBINATORIA, 2019, 146 : 37 - 50
  • [6] SOME CONSTACYCLIC CODES OVER FINITE CHAIN RINGS
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 683 - 694
  • [7] SKEW CONSTACYCLIC CODES OVER FINITE CHAIN RINGS
    Jitman, Somphong
    Ling, San
    Udomkavanich, Patanee
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (01) : 39 - 63
  • [8] The depth spectrums of constacyclic codes over finite chain rings
    Kong, Bo
    Zheng, Xiying
    Ma, Hongjuan
    DISCRETE MATHEMATICS, 2015, 338 (02) : 256 - 261
  • [9] Skew Constacyclic Codes over Finite Fields and Finite Chain Rings
    Dinh, Hai Q.
    Nguyen, Bac T.
    Sriboonchitta, Songsak
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [10] On isometry and equivalence of constacyclic codes over finite chain rings
    Chibloun, Abdelghaffar
    Ou-azzou, Hassan
    Najmeddine, Mustapha
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2025, 17 (01): : 239 - 263