On the distribution of the zeros of Eisenstein series for Γ0∗(5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^*(5)$$\end{document} and Γ0∗(7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^*(7)$$\end{document}

被引:0
作者
Seiji Kuga
机构
[1] Kyushu University,Graduate School of Mathematics
关键词
Modular forms; Fricke groups; Eisenstein series; 11F03; 11F11;
D O I
10.1007/s11139-022-00557-5
中图分类号
学科分类号
摘要
The goal of the present paper is to show that all the zeros of the Eisenstein series for Γ0∗(5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^*(5)$$\end{document} and Γ0∗(7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^*(7)$$\end{document} on the standard fundamental domain lie on the lower boundary arcs. These are improvements of the results in Shigezumi (Kyushu J Math 61:527–549, 2007).
引用
收藏
页码:995 / 1010
页数:15
相关论文
共 15 条
[1]  
Choi S(2016)On the zeros of certain weakly holomorphic modular forms for J. Number Theory 166 298-323
[2]  
Im B(2015)Rational period functions and cycle integrals in higher level cases J. Math. Anal. Appl. 427 741-758
[3]  
Choi S(2008)On the zeros and coefficients of certain weakly holomorphic modular forms Paul Appl. Math. Q. 4 1327-1340
[4]  
Kim C(2021)Zeros of certain weakly holomorphic modular forms for the Fricke group Acta Arith. 197 37-54
[5]  
Duke W(2021)On the zeros of certain weakly holomorphic modular forms for Acta. Arith. 201 219-239
[6]  
Jenkins P(2007) and J. Math. Soc. Jpn. 59 693-706
[7]  
Hanamoto S(1970)On the zeros of Eisenstein series for Bull. Lond. Math. Soc. 2 169-170
[8]  
Kuga S(2007) and Kyushu J. Math. 61 527-549
[9]  
Kuga S(undefined)On the zeros of Eisenstein series for undefined undefined undefined-undefined
[10]  
Miezaki T(undefined)On the zeros of the Eisenstein series for undefined undefined undefined-undefined