Parameterized Inapproximability of Independent Set in H-Free Graphs

被引:0
作者
Pavel Dvořák
Andreas Emil Feldmann
Ashutosh Rai
Paweł Rzążewski
机构
[1] Charles University,Faculty of Mathematics and Physics
[2] Warsaw University of Technology,Faculty of Mathematics and Information Science
[3] University of Warsaw,Institute of Informatics
[4] IIT Delhi,Department of Mathematics
来源
Algorithmica | 2023年 / 85卷
关键词
Independent set; -free graphs; Approximation; Parameterized approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Independent Set problem in H-free graphs, i.e., graphs excluding some fixed graph H as an induced subgraph. We prove several inapproximability results both for polynomial-time and parameterized algorithms. Halldórsson [SODA 1995] showed that for every δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document} the Independent Set problem has a polynomial-time (d-12+δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{d-1}{2}+\delta )$$\end{document}-approximation algorithm in K1,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,d}$$\end{document}-free graphs. We extend this result by showing that Ka,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{a,b}$$\end{document}-free graphs admit a polynomial-timeO(α(G)1-1/a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\alpha (G)^{1-1/a})$$\end{document}-approximation, where α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)$$\end{document} is the size of a maximum independent set in G. Furthermore, we complement the result of Halldórsson by showing that for some γ=Θ(d/logd),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =\Theta (d/\log d),$$\end{document} there is no polynomial-time γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-approximation algorithm for these graphs, unless NP  = ZPP. Bonnet et al. [Algorithmica 2020] showed that Independent Set parameterized by the size k of the independent set is W[1]-hard on graphs which do not contain (1) a cycle of constant length at least 4, (2) the star K1,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,4}$$\end{document}, and (3) any tree with two vertices of degree at least 3 at constant distance. We strengthen this result by proving three inapproximability results under different complexity assumptions for almost the same class of graphs (we weaken conditions (1) and (2) that G does not contain a cycle of constant length at least 5 or K1,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,5}$$\end{document}). First, under the ETH, there is no f(k)·no(k/logk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(k) \cdot n^{o(k/\log k)}$$\end{document} algorithm for any computable function f. Then, under the deterministic Gap-ETH, there is a constant δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document} such that no δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-approximation can be computed in f(k)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(k) \cdot n^{O(1)}$$\end{document} time. Also, under the stronger randomized Gap-ETH there is no such approximation algorithm with runtime f(k)·no(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(k) \cdot n^{o(\sqrt{k})}$$\end{document}. Finally, we consider the parameterization by the excluded graph H, and show that under the ETH, Independent Set has no no(α(H))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{o(\alpha (H))}$$\end{document} algorithm in H-free graphs. Also, we prove that there is no d/ko(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d/k^{o(1)}$$\end{document}-approximation algorithm for K1,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,d}$$\end{document}-free graphs with runtime f(d,k)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(d,k) \cdot n^{{\mathcal {O}}(1)}$$\end{document}, under the deterministic Gap-ETH.
引用
收藏
页码:902 / 928
页数:26
相关论文
共 50 条
[1]  
Alekseev V(2004)Polynomial algorithm for finding the largest independent sets in graphs without forks Discret. Appl. Math. 135 3-16
[2]  
Austrin P(2011)Inapproximability of vertex cover and independent set in bounded degree graphs Theory Comput. 7 27-43
[3]  
Khot S(2018)On the Lovász theta function for independent sets in sparse graphs SIAM J. Comput. 47 1039-1055
[4]  
Safra M(2020)Parameterized complexity of independent set in h-free graphs Algorithmica 82 2360-2394
[5]  
Bansal N(2020)From gap-exponential time hypothesis to fixed parameter tractable inapproximability: clique, dominating set, and more SIAM J. Comput. 49 772-810
[6]  
Gupta A(2016)Approximation resistance from pairwise-independent subgroups J. ACM 63 1-32
[7]  
Guruganesh G(1986)A simple proof of the Erdős–Gallai theorem on graph sequences Bull. Aust. Math. Soc. 33 67-70
[8]  
Bonnet É(1981)Complement reducible graphs Discret. Appl. Math. 3 163-174
[9]  
Bousquet N(2004)Approximating maximum clique by removing subgraphs SIAM J. Discrete Math. 18 219-225
[10]  
Charbit P(1996)Interactive proofs and the hardness of approximating cliques J. ACM 43 268-292